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1. Derivation of the Simple Repression Input-Output Function

In this section, we derive the input-output function for the inducible simple repression motif. This section summarizes the results
from Garcia and Phillips 2011 (1) and Razo-Mejia et al. 2018 (2) and we direct the reader to these references for further detail.

We begin by defining the simple repression motif as a regulatory architecture in which binding of a repressor to its cognate
binding site occludes binding of an RNA polymerase (RNAP) to the promoter, thereby hindering gene expression (3, 4). The
repressor in this work is considered to be an allosteric molecule which fluctuates between an active and inactive state in thermal
equilibrium. Binding of an allosteric effector molecule (i.e. an inducer) to a binding site in one domain of the repressor can
stabilize the inactive state relative to the active state. The repressor can still bind the DNA in the inactive state but the sequence
specificity is reduced and binding to the cognate sequence becomes comparable to nonspecific binding. Such regulatory motifs
have been well characterized from a thermodynamic perspective in which the system is considered to be in equilibrium at the time
scales relevant to molecular binding events. Under such a model, we can assume that the level of gene expression is proportional
to the the probability of RNAP being bound to the promoter and this has frequently been applied in thermodynamic models of
transcription (1–10).

The probability of the promoter being occupied by either a polymerase, repressor, or neither is dictated by the Boltzmann
distribution,

Pstate µ e
�#state/kBT , [1]

where #state is the energy of the state of interest. This energy is scaled to the thermal energy of the system kBT where kB is
Boltzmann’s constant and T is the temperature in units of K. The goal of this section is to translate generic proportionality in
Eq. (1) into the relevant states of our system.

The occupancy states of the promoter and corresponding statistical weights can be seen in Fig. S1 (A). Here we use P to denote
the number of RNAP per cell, RA as the number of active repressors, and RI as the number of inactive repressors. We assume
there is a single specific binding site on the genome and NNS nonspecific binding sites. The polymerase, active, and inactive
repressor in this work are considered to bind the DNA with different strengths. The energy of binding for each species is given as
D#P, D#RA, or D#RI , which captures the energetic difference between nonspecific and specific binding for that species. Since we
consider a single specific binding site for both the polymerase and repressor, we can say that NNS >> P and NNS >> RA + RI ,
allowing the multiplicity of arranging P polymerases and R repressors to be approximately equal to P/NNS and (RA + RI)/NNS,
respectively.
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Fig. S1. States and statistical weights for a simple repression motif with an allosteric repressor. (A) Occupancy states of the promoter in which the statistical weights are
relative to the unoccupied state. P, RA , and RI correspond to the average number of RNAP, active repressors, and inactive repressors per cell, respectively. The relative DNA
binding energies are given as D#P , D#RA and D#RI . (B) Allosteric states of the repressor and the statistical weights relative to the active repressor with no inducer bound. The
dissociation constant for the inducer to the active and inactive state of the repressor are denoted as KA and KI , respectively, c is the inducer concentration, and D#AI is the
energetic difference between the active and inactive states of the repressor.

With these states and statistical weights enumerated, we can now define the probability of a polymerase being bound to the
promoter as

Pbound =
P

NNS
e
�bD#P

1 + P

NNS
e�bD#P + RA

NNS
e�bD#RA + RI

NNS
e�bD#RI

, [2]

where we have defined b as 1
kBT

.
It is experimentally difficult to measure Pbound directly as identifying the direct proportionality to gene expression is not

straightforward. However, we can easily measure the fold-change in gene expression, defined as the probability of a polymerase
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being bound to the promoter in the presence of repressor relative to constitutive expression,

fold-change =
Pbound(R > 0)
Pbound(R = 0)

=
1 + P

NNS
e
�bD#P

1 + P

NNS
e�bD#P + RA

NNS
e�bD#RA + RI

NNS
e�bD#RI

. [3]

This can be simplified by making two well justified approximations. We can assume that binding of the inactive repressor to the
specific binding site is approximately equal to nonspecific binding, RI

NNS
e
�bD#RI << 1 + RA

NNS
e
�bD#RA . Secondly, we can state that

binding of RNAP to the promoter is weak, P

NNS
e
�bD#P << 1. Assuming P ⇡ 103 (11), NNS ⇡ 4.6 ⇥ 106 (the length of the E. coli

genome in base pairs) and D#P ⇡ �2 to �5 kBT (12), the probability of this state comes to ⇡ 1% and can be neglected. Using these
approximations, we can state that the fold-change in gene expression has the form

fold-change =

✓
1 +

RA

NNS

e
�bD#RA

◆�1
. [4]

In order to make falsifiable predictions, we must have a precise knowledge of the number of active repressors in the cell RA.
While determining this quantity is fraught with experimental difficulties, it is relatively easy to determine the total number of
repressors per cell R through quantitative western blotting (1), fluorescence based methods (9), or proteomic studies (13). We can
compute the number of active repressors at a given inducer concentration c by multiplying the total number of repressors by the
probability of a repressor being active at that inducer concentration,

RA(c) = pact(c)R. [5]

Similarly to computing Pbound, we can compute the possible states and statistical weights of the repressor activity, shown in
Fig. S1 (B). Following the model of Monod, Wyman, and Changeux (14), we have defined all statistical weights relative to the
active repressor with no bound inducer molecules. We have defined the dissociation constant of the inducer to the active and
inactive repressor as KA and KI , respectively, and have assigned an energetic penalty e

�bD#AI to all inactive states of the repressor.
The energetic term D#AI represents the relative energy difference between the active and inactive states, D#AI = # I � #A. For the
lac repressor used in this work, the value of D#AI has been inferred to be 4.5 kBT, indicating that the active state is energetically
preferred and with no inducer, approximately 99% of the repressors are in the active state.

Using these states and weights, we can compute Pact(c) as

pact(c) =

⇣
1 + c

KA

⌘2

⇣
1 + c

KA

⌘2
+ e�bD#AI

⇣
1 + c

KI

⌘2 . [6]

Using Eq. (4) - Eq. (6), we can then state that at a given inducer concentration c, the fold-change in gene expression can be defined
as

fold-change =

0

B@1 +

⇣
1 + c

KA

⌘2

⇣
1 + c

KA

⌘2
+ e�bD#AI

⇣
1 + c

KI

⌘2
R

NNS

e
�bD#RA

1

CA

�1

, [7]

which is the result stated in Eq. 1 of the main text. We emphasize that equilibrium models as derived here have frequently
been used to characterize the simple repression motif (1–5, 9) in addition to non-equilibrium approaches which have the same
functional form as Eq. (7) (15).
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2. Bayesian Parameter Estimation For DNA Binding Mutants

In this section, we outline the statistical model used in this work to estimate the DNA binding energy for a given mutation in the
DNA binding domain. We begin with a derivation of our statistical model using Bayes’ theorem and then perform a series of
principled steps to validate our choices of priors, ensure computational feasibility, and assess the validity of the model given the
collected data. This work follows the analysis pipeline outlined by Michael Betancourt in his case-study entitled "Towards A
Principled Bayesian Workflow."

The second subsection "Building a Generative Statistical Model" lays out the statistical model used in this work to estimate the
DNA binding energy and the error term s. The subsequent subsections – "Prior Predictive Checks", "Simulation Based Calibration",
and "Posterior Predictive Checks" – define and summarize a series of tests that ensure that the parameters of the statistical model can
be identified and are computationally tractable. To understand how we defined our statistical model, only the second subsection
is needed.

Calculation of the Fold-Change in Gene Expression. We appreciate the subtleties of the efficiency of photon detection in the flow
cytometer, fluorophore maturation and folding, and autofluorescence correction, and we understand the importance in modeling
the effects that these processes have on the reported value of the fold-change. However, in order to be consistent with the methods
used in the literature, we took a more simplistic approach to calculate the fold-change. Given a set of fluorescence measurements
of the constitutive expression control (R = 0), an autofluorescence control (no YFP), and the experimental strain (R > 0), we
calculate the fold-change as

fold-change =
hIcell(R > 0)i � hIautofluorescencei
hIcell(R = 0)i � hIautofluorescencei

. [8]

It is important to note here that for a given biological replicate, we consider only a point estimate of the mean fluorescence for
each sample and perform a simple subtraction to adjust for background fluorescence. For the analysis going forward, all mentions
of measured fold-change are determined by this calculation.

Building a Generative Statistical Model. To identify the minimal parameter set affected by a mutation, we assume that mutations
in the DNA binding domain of the repressor alters only the DNA binding energy D#RA, while the other parameters of the
repressor are left unperturbed from their wild-type values. As a first approach, we can assume that all of the other parameters
are known without error and can be taken as constants in our physical model. Ultimately, we want to know how probable a
particular value of D#RA is given a set of experimental measurements y. Bayes’ theorem computes this distribution, termed the
posterior distribution as

g(D#RA | y) =
f (y |D#RA)g(D#RA)

f (y)
, [9]

where we have used g and f to represent probability densities over parameters and data, respectively. The expression f (y |D#RA)
captures the likelihood of observing our data set y given a value for the DNA binding energy under our physical model. All
knowledge we have of what the DNA binding energy could be, while remaining completely ignorant of the experimental
measurements, is defined in g(D#RA), referred to as the prior distribution. Finally, the likelihood that we would observe the data
set y while being ignorant of our physical model is defined by the denominator f (y). In this work, this term serves only as a
normalization factor and as a result will be treated as a constant. We can therefore say that the posterior distribution of D#RA is
proportional to the joint distribution between the likelihood and the prior,

g(D#RA | y) µ f (y |D#RA)g(D#RA). [10]

We are now tasked with translating this generic notation into a concrete functional form. Our physical model given by Eq. (7)
computes the average fold-change in gene expression. Speaking practically, we make several replicate measurements of the
fold-change to reduce the effects of random errors. As each replicate is independent of the others, it is reasonable to expect that
these measurements will be normally distributed about the theoretical value of the fold-change µ, computed for a given D#RA. We
can write this mathematically for each measurement as

f (y |D#RA) =
1

(2ps2)N/2

N

’
i

exp

�(yi � µ(D#RA))

2

2s2

�
, [11]

where N is the number of measurements in y and yi is the i
th experimental fold-change measurement. We can write this likelihood

in shorthand as
f (y |D#RA) = Normal{µ(D#RA), s} [12]

which we will use for the remainder of this section.
Using a normal distribution for our likelihood has introduced a new parameter s which describes the spread of our measure-

ments about the true value. We must therefore include it in our parameter estimation and assign an appropriate prior distribution
such that the posterior distribution becomes

g(D#RA, s |y) µ f (y |D#RA, s)g(D#RA)g(s). [13]
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We are now tasked with assigning functional forms to the priors g(D#RA) and g(s). Though one hopes that the result of the
inference is not too dependent on the choice of prior, it is important to choose one that is in agreement with our physical and
physiological intuition of the system.

We can impose physically reasonable bounds on the possible values of the DNA binding energy D#RA. We can say that it is
unlikely that any given mutation in the DNA binding domain will result in an affinity greater than that of biotin to streptavidin
[1 fM ⇡ �35 kBT, BNID 107139 (16)], one of the strongest known non-covalent bonds. Similarly, it’s unlikely that a given mutation
will result in a large, positive binding energy, indicating non-specific binding is preferable to specific binding (⇠ 1 to 10 kBT).
While it is unlikely for the DNA binding energy to exceed these bounds, it’s not impossible, meaning we should not impose these
limits as hard boundaries. Rather, we can define a weakly informative prior as a normal distribution with a mean and standard
deviation as the average of these bounds,

g(D#RA) ⇠ Normal{�12, 12} [14]
whose probability density function in shown in Fig. S2 (A).

By definition, fold-change is restricted to the bounds [0, 1]. Measurement noise and fluctuations in autofluorescence background
subtraction means that experimental measurements of fold-change can extend beyond these bounds, though not substantially. By
definition, the scale parameter s must be positive and greater than zero. We also know that for the measurements to be of any use,
the error should be less than the available range of fold-change, 1.0. We can choose such a prior as a half normal distribution

g(s) =
1
f

r
2
p

exp

� s2

2f2

�
; 8 s � 0, [15]

where f is the standard deviation. By choosing f = 0.1, it is unlikely that s � 1 yet not impossible, permitting the occasional
measurement significantly outside of the theoretical bounds. The probability density function for this prior is shown in Fig. S2(B).

While these choices for the priors seem reasonable, we can check their appropriateness by using them to simulate a data set
and checking that the hypothetical fold-change measurements obey our physical and physiological intuition.

Prior Predictive Checks. If our choice of prior distribution for each parameter is appropriate, we should be able to simulate data
sets using these priors that match our expectations. In essence, we would hope that these prior choices would generate some
data sets with fold-change measurements above 1 or below zero, but they should be infrequent. If we end up getting primarily
negative values for fold-change, for example, then we can surmise that there is something wrong in our definition of the prior
distribution. This method, coined a prior predictive check, was first put forward by Isidore Good in 1950 (17) and has received
newfound attention in computational statistics.

We perform the simulation in the following manner. We first draw a random value for D#RA out of its prior distribution stated
in Eq. (14) and calculate what the mean fold-change should be given our theory described in Eq. (7). With this in hand, we draw
a random value for s from its prior distribution, specified in Eq. (15). We then generate a simulated dataset by drawing ⇡ 70
fold-change values across twelve inducer concentrations from the likelihood distribution which we defined in Eq. (12). This
roughly matches the number of measurements made for each mutant in this work. We repeat this procedure for 800 draws from
the prior distributions, which is enough to observe the occasional extreme fold-change value from the likelihood. As the DNA
binding energy is the only parameter of our physical model that we are estimating, we had to choose values for the others. We
kept the values of the inducer binding constants KA and KI the same as the wild-type repressor (139 µM and 0.53 µM, respectively).
We chose to use R = 260 repressors per cell as this is the repressor copy number we used in the main text to estimate the DNA
binding energies of the three mutants.

The draws from the priors are shown in S2(A) and (B) as black points above the corresponding distribution. To display the
results, we computed the percentiles of the simulated data sets at each inducer concentration. These percentiles are shown as
red shaded regions in Fig. S2(C). The 5th percentile (dark red band) has the characteristic profile of an induction curve. Given
that the prior distribution for D#RA is centered at �12 kBT and we chose R = 260, we expect the generated data sets to cluster
about the induction profile defined by these values. More importantly, approximately 95% of the generated data sets fall between
fold-change values of -0.1 and 1.1, which is within the realm of possibility given the systematic and biological noise in our
experiments. The 99th percentile maximum is approximately 1.3 and the minimum approximately �0.3. While we could tune our
choice of prior further to minimize draws this far from the theoretical bounds, we err on the side of caution and accept these
values as it is possible that fold-change measurements this high or low can be observed, albeit rarely.

Through these prior predictive checks, we feel confident that these choices of priors are appropriate for the parameters we wish
to estimate. We can now move forward and make sure that the statistical model as a whole is valid and computationally tractable.

Sensitivity Analysis and Simulation Based Calibration. Satisfied with our choice of prior distributions, we can proceed to check
other properties of the statistical model and root out any pathologies lurking in our model assumptions.

To build trust in our model, we could generate a data set ỹ with a known value for s and D#RA, estimate the posterior
distribution g(D#RA, s | ỹ), and determine how well we were able to retrieve the true value of the parameters. However, running
this once or twice for handpicked values of s and D#RA won’t reveal edge-cases in which the inference fails, some of which may
exist in our data. Rather than performing this operation once, we can run this process over a variety of data sets where the ground
truth parameter value is drawn from the prior distribution (as we did for the prior predictive checks). For an arbitrary parameter
q, the joint distribution between the ground truth value q̃, the inferred value q, and the simulated data set ỹ can be written as

p(q, ỹ, q̃) = g(q | ỹ) f (ỹ | q̃)g(q̃). [16]
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Fig. S2. Prior distributions and prior predictive check for estimation of the DNA binding energy. (A) Prior probability density function for DNA binding energy D#RA as
⇠ Normal(�12, 12). (B) Prior probability density function for the standard deviation in measurement noise s as ⇠ HalfNormal(0, 0.1). (C) Percentiles of values drawn from the
likelihood distribution given draws from prior distributions given R = 260, KA = 139 ⇥ 10�6 M, KI = 0.53 ⇥ 10�6 M, and D#AI = 4.5 kBT, which match the parameters used for
the predictions in Razo-Mejia et al. 2018 (2). Black points at top of (A) and (B) represent draws used to generate fold-change measurements from the likelihood distribution.
Percentiles in (C) generated from 800 draws from the prior distributions. For each draw from the prior distributions, a data set of 70 measurements over 12 IPTG concentrations
(ranging from 0 to 5000 µM) were generated from the likelihood.

If this process is run for a large number of simulations, Eq. (16) can be marginalized over all data sets ỹ and all ground truth
values q̃ to yield the original prior distribution,

Z
dq̃

Z
dỹp(q, ỹ, q̃) = g(q). [17]

This result, described by Talts et al. 2018 (18), holds true for any statistical model and is a natural self consistency property of
Bayesian inference. Any deviation between the distribution of our inferred values for q and the original prior distribution g(q)
indicates that either our statistical model is malformed or the computational method is not behaving as expected. There are a
variety of ways we can ensure that this condition is satisfied, which we outline below.

Using the data set generated for the prior predictive checks [shown in Fig. S2(C)], we sampled the posterior distribution
and compute D#RA and s for each simulation and checked that they matched the original prior distribution. To perform the
inference, we use Markov chain Monte Carlo (MCMC) to sample the posterior distribution. Specifically, we use the Hamiltonian
Monte Carlo algorithm implemented in the Stan probabilistic programming language (19). The specific code files can be accessed
through the paper website or the associated GitHub repository. The original prior distribution and the distribution of inferred
parameter values can be seen in Fig. S3 (A) and (B). For both D#RA and s, we can accurately recover the ground truth distribution
(blue) via sampling with MCMC (red). For D#RA, there appears to be an upper and lower limit past which we are unable to
accurately infer the binding energy. This can be seen in both the histogram [Fig. S3(A)] and the empirical cumulative distribution
[Fig. S3(B)] as deviations from the ground truth when DNA binding is below ⇡ �25kBT or above ⇡ �5kBT. These limits hinder
our ability to comment on exceptionally strong or weak binding affinities. However, as all mutants queried in this work exhibited
binding energies between these limits, we surmise that the inferential scheme permits us to draw conclusions about the inferred
DNA binding strengths.

Rather than examining the agreement of the data-averaged posterior and the ground truth prior distribution solely by eye, we
can compute summary statistics using the mean µ and standard deviation s of the posterior and prior distributions which permit
easier identification of pathologies in the inference. One such quantity is the posterior z-score, which is defined as

z =
µposterior � q̃

sposterior
. [18]

This statistic summarizes how accurately the posterior recovers the ground truth value beyond simply reporting the mean,
median, or mode of the posterior distribution. Z-scores around 0 indicate that the posterior is concentrating tightly about the true
value of the parameter whereas large values (either positive or negative) indicate that the posterior is concentrating elsewhere. A
useful feature of this metric is that the width of the posterior is also considered. It is possible that the posterior could have a mean
very close to the ground truth value, but have an incredibly narrow distribution/spread such that it does not overlap with the
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Fig. S3. Comparison of averaged posterior and prior distributions for D#RA and s. (A) Distribution of the average values for the DNA binding energy D#RA (red) overlaid with
the ground truth distribution (blue). (B) Data averaged posterior (red) for the standard deviation of fold-change measurements overlaid with the ground truth distribution (blue).
Top and bottom show the same data with different visualizations.

ground-truth. Only comparing the mean value to the ground truth would suggest that the inference "worked". However with a
small standard deviation generates a very large z-score, telling us that something has gone awry.

If our inferential model is behaving properly, the width of the posterior distribution should be significantly smaller than the
width of the prior, meaning that the posterior is being informed by the data. The level to which the posterior is being informed by
the data can be easily calculated given knowledge of both the prior and posterior distribution. This quantity, aptly named the
shrinkage s, can be computed as

s = 1 �
s2

posterior

s2
prior

. [19]

When the shrinkage is close to zero, the variance of the posterior is approximately the same as the variance of the prior, model is
not being properly informed by the data. When s ⇡ 1, the variance of the posterior is much smaller than the variance of the prior,
indicating that the it is being highly informed by the data. A shrinkage less than 0 indicates that the posterior is wider than the
prior distribution, revealing a severe pathology in either the model itself or the implementation.

In Fig. S4, we compute these summary statistics for each parameter. For both D#RA and s, we see clustering of the z-score about
0 with the extrema reaching ⇡ ±3. This suggests that for the vast majority of our simulated data sets, the posterior distribution
concentrated about the ground truth value. We also see that for both parameters, the posterior shrinkage s is ⇡ 1, indicating that
the posterior is being highly informed by the data. There is a second distribution centered ⇡ 0.8 for D#RA, indicating that for a
subset of the data sets, the posterior is only ⇡ 80% narrower than the prior distribution. These samples are those that were drawn
outside of the limits of ⇡ �25 to �5 kBT where the inferential power is limited. Nevertheless, the posterior still significantly
shrank, indicating that the data strongly informs the posterior.

The general self-consistency condition given by Eq. (17) provides another route to ensure that the model is computationally
tractable. Say that we draw a value for the DNA binding energy from the prior distribution, simulate a data set, and sample
the posterior using MCMC. The result of this sampling is a collection of N values of the parameter which may be above, below,
or equal to the ground-truth value. From this set of values, we select L of them and rank order them by their value. Talts
and colleagues (18) derived a general theorem which states that the number of samples less than the ground truth value of
the parameter (termed the rank statistic) is uniformly distributed over the interval [0, L]. As Eq. (17) must hold true for any
statistical model, deviations from uniformity signal that there is a problem in the implementation of the statistical model. How
the distribution deviates is also informative as different types of failures result in different distributions. The nature of these
deviations, along with a more formal proof of the uniform distribution of rank statistics can be found in Talts et al. 2018 (18)
where it was originally derived.

Given the sampling statistics for each of the simulated data sets, we took 800 of the MCMC samples of the posterior distribution
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Fig. S4. Inferential sensitivity for estimation of D#RA and s. The posterior z-score for each posterior distribution inferred from a simulated data set is plotted against the
shrinkage for (A) the DNA binding energy D#RA and (B) the standard deviation of fold-change measurements s

for each of the 800 simulated data sets and computed the rank statistic. The distributions are shown in Fig. S5 as both histograms
and ECDFs for the DNA binding energy and standard deviation. The distribution of rank statistics for both parameters appears to
be uniform. The gray band overlaying the histograms (top row) as well as the gray envelopes overlaying the ECDFs (bottom
row) represent the 99th percentile expected from a true uniform distribution. The uniformity of this distribution, along with the
well-behaved z-scores and shrinkage for each parameter, tells us that there are no underlying pathologies in our statistical model
and that it is computationally tractable. However, this does not mean that it is correct. Whether this model is valid for the actual
observed data is the topic of the next section.

Parameter Estimation and Posterior Predictive Checks. We now turn to applying our vetted statistical model to experimental
measurements. While the same statistical model was applied to all three DNA binding mutants, here we only focus on the mutant
Q21M for brevity.

Using a single induction profile, we sampled the posterior distribution over both the DNA binding energy D#RA and the
standard deviation s using MCMC implemented in the Stan programming language. The output of this process is a set of 4000
samples of both parameters along with the value of their log posterior probabilities, which serves as an approximate measure
of the probability of each value. The individual samples are shown in Fig. S6. The joint distribution between D#RA and s is
shown in the lower left hand corner, and the marginal distributions for each parameter are shown above and to the right of
the joint distribution, respectively. The joint distribution is color coded by the value of the log posterior, with yellow and blue
corresponding to high and low probability, respectively. The symmetric shape of the joint distribution is a telling sign that there is
no correlation between two parameters. The marginal distributions for each parameter are also relatively narrow, with the DNA
binding energy covering a range of ⇡ 0.6 kBT and s spanning ⇡ 0.02. To more precisely quantify the uncertainty, we computed
the shortest interval of the marginal distribution for each parameter contains 95% of the probability. The bounds of this interval,
coined the Bayesian credible region, can accommodate asymmetry in the marginal distribution since the upper and lower bounds
of the estimate are reported. In the main text, we reported the DNA binding energy estimated from these data to be 15.43+0.06

�0.06 kBT,
where the first value is the median of the distribution and the super- and subscripts correspond to the upper and lower bounds of
the credible region, respectively.

While looking at the shape of the posterior distribution can be illuminating, it is not enough to tell us if the parameter values
extracted make sense or accurately describe the data on which they were conditioned. To assess the validity of the statistical
model in describing actual data, we again turn to simulation, this time using the posterior distributions for each parameter rather
than the prior distributions. The likelihood of our statistical model assumes that across the entire induction profile, the observed
fold-change is normally distributed about the theoretical prediction with a standard deviation s. If this is an accurate depiction
of the generative process, we should be able to draw values from the likelihood using the sampled values for D#RA and s that
are indistinguishable from the actual experimental measurements. This process is known as a posterior predictive check and is a
Bayesian method of assessing goodness-of-fit.

For each sample from the posterior, we computed the theoretical mean fold-change given the sampled value for D#RA and
Eq. (7). With this mean in hand, we used the corresponding sample for s and drew a data set from the likelihood distribution the
same size as the real data set used for the inference. As we did this for every sample of our MCMC output (a total of ⇡ 4000), it is
more instructive to compute the percentiles of the generated data than to show the entire output. In Fig. S6(B), the percentiles of
the generated data sets are shown overlaid with the data used for the inference. We see that all of the data points fall within the
99th percentile of simulated data sets with the 5th percentile tracking the mean of the data at each inducer concentration. As there
are no systematic deviations or experimental observations that fall far outside those generated from the statistical model, we can
safely say that the statistical model derived here accurately describes the observed data.
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Fig. S5. Rank distribution of the posterior samples from simulated data. Top row shows a histogram of the rank distribution with n = 20 bins. Bottom row is the cumulative
distribution for the same data. Gray bands correspond to the 99th percentile of expected variation from a uniform distribution. (A) Distribution for the DNA binding energy D#RA

and (B) for the standard deviation s.
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Fig. S6. Markov Chain Monte Carlo (MCMC) samples and posterior predictive check for DNA binding mutant Q21M. (A) Marginal and joint sampling distributions for DNA
binding energy D#RA and s. Each point in the joint distribution is a single sample. Marginal distributions for each parameter are shown adjacent to joint distribution. Color in the
joint distribution corresponds to the value of the log posterior with the progression of blue to yellow corresponding to increasing probability. (B) The posterior predictive check of
model. The measurements of the fold-change in gene expression are shown as black open-faced circles. The percentiles are shown as colored bands and indicate the fraction
of simulated data drawn from the likelihood that fall within the shaded region.
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3. Inferring the Free Energy From Fold-Change Measurements

In this section, we describe the statistical model to infer the free energy F from a set of fold-change measurements. We follow
the same principled workflow as described previously for the DNA binding estimation, including declaration of the generative
model, prior predictive checks, simulation based calibration, and posterior predictive checks. Finally, we determine an empirical
limit in our ability to infer the free energy and define a heuristic which can be used to identify measurements that are likely
inaccurate. To understand the statistical model and the empirical limits of detection, only the subsections Building A Generative

Model and Sensitivity Limits and Systematic Errors in Inference are necessary.

Building A Generative Model. In the main text, we showed that the fold-change equation defined in Eq. (7) can be rewritten in the
form of a Fermi function,

fold-change =
1

1 + e�F/kBT
, [20]

where F corresponds to the free energy difference between the repressor bound and unbound states of the promoter. While the
theory prescribes a way for us to calculate the free energy based on our knowledge of the biophysical parameters, we can directly
calculate the free energy of a measurement of fold-change by simply rearranging Eq. (20) as

F = �kBT log
✓

1
fold-change

� 1
◆

. [21]

With perfect measurement of the fold-change in gene expression (assuming no experimental or measurement noise), the free
energy can be directly calculated. However, actual measurements of the fold-change in gene expression can extend beyond the
theoretical bounds of 0 and 1, for which the free energy is mathematically undefined.

As the fold-change measurements between biological replicates are independent, it is reasonable to assume that they are
normally distributed about a mean value µ with a standard deviation s. While the mean value is restricted to the bounds of [0, 1],
fold-change measurements outside of these bounds are still possible given that they are distributed about the mean with a scale of
s. Thus, if we have knowledge of the mean fold-change in gene expression about which the observed fold-change is distributed,
we can calculate the mean free energy as

F = �kBT log
✓

1
µ
� 1

◆
. [22]

For a given set of fold-change measurements y, we wish to infer the posterior probability distribution for µ and s, given by
Bayes’ theorem as

g(µ, s | y) µ f (y | µ, s)g(µ)g(s), [23]

where we have dropped the normalization constant f (y) and assigned a proportionality between the posterior and joint probability
distribution. Given that the measurements are independent, we define the likelihood f (y | µ, s) as a normal distribution,

f (y | µ s) ⇠ Normal{µ, s}. [24]

While the mean µ is restricted to the interval [0, 1], there is no reason a priori to think that it is more likely to be closer to either
bound. To remain uninformative and be as permissive as possible, we define a prior distribution for µ as a Uniform distribution
between 0 and 1,

g(µ) =

(
1

µmax�µmin
µmin < µ < µmax

0 otherwise
. [25]

Here, µmin = 0 and µmax = 1, reducing g(µ) to 1. For s, we can again assume a half-normal distribution with a standard deviation
of 0.1 as was used for estimating the DNA binding energy [Eq. (15)],

g(s) = HalfNormal{0, 0.1}. [26]

With a full generative model defined, we can now use prior predictive checks to ensure that our choices of prior are appropriate
for the inference.

Prior Predictive Checks. To check the validity of the chosen priors, we pulled 1000 combinations of µ and s from their respective
distributions [Fig. S7(A)] and subsequently drew a set of 10 fold-change values (a number comparable to the number of biological
replicates used in this work) from a normal distribution defined by µ and s. To visualize the range of values generated from
these checks, we computed the percentiles of the empirical cumulative distributions of the fold-change values, as can be seen in
Fig. S7(C). Approximately 95% of the the generated fold-change measurements were between the theoretical bounds of [0, 1]
whereas 5% of the data sets fell outside with the maximum and minimum values extending to ⇡ 1.2 and �0.2, respectively. Given
our familiarity with these experimental strains and the detection sensitivity of the flow cytometer, these excursions beyond the
theoretical bounds agree with our intuition. Satisfied with our choice of prior distributions, we can proceed to check the sensitivity
and computational tractability of our model through simulation based calibration.
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Fig. S7. Prior predictive checks for inference of the mean fold-change. (A) The prior distributions for µ (left) and s (right). The vertical axis is proportional to the probability of
the value. Black points above distributions correspond to the values used to perform the prior predictive checks. (B) Percentiles of the data generated for each draw from the
prior distributions shown as a cumulative distribution. Percentiles were calculated for 1000 generated data sets, each with 10 fold-change measurements drawn from the
likelihood given the drawn values of µ and s.

Simulation Based Calibration. To ensure that the parameters can be estimated with confidence, we sampled the posterior
distribution of µ and s for each data set generated from the prior predictive checks. For each inference, we computed the z-score
and shrinkage for each parameter, shown in Fig. S8(A). For both parameters, the z-scores are approximately centered about zero,
indicating that the posteriors concentrate about the ground truth value of the parameter. The z-scores for s [black points in Fig.
S10(A)] appear to be slightly off centered with more negative values than positive. This suggests that s is more likely to be slightly
overestimated in some cases. The shrinkage parameter for µ (red points) is very tightly distributed about 1.0, indicating that the
prior is being strongly informed by the data. The shrinkage is more broadly distributed for for s with a minimum value of ⇡ 0.5.
However, the median shrinkage for s is ⇡ 0.9, indicating that half of the inferences shrank the prior distribution by at least 90%.
While we could revisit the model to try and improve the shrinkage values, we are more concerned with µ which shows high
shrinkage and zero-centered z-scores.

To ensure that the model is computationally tractable, we computed the rank statistic of each parameter for each inference.
The empirical cumulative distributions for µ (black) and s (red) can be seen in Fig. S8(B). Both distributions appear to be uniform,
falling within the 99th percentile of the variation expected from a true uniform distribution. This indicates that the self-consistency
relation defined by Eq. (17) holds for this statistical model. With a computationally tractable model in hand, we can now apply
the statistical model to our data and verify that data sets drawn from the data-conditioned posterior are indistinguishable from
the experimental measurements.

Posterior Predictive Checks. The same statistical model was applied to every unique set of fold-change measurements used in
this work. Here, we focus only on the set of fold-change measurements for the double mutant Y20I-Q294V at 50 µM IPTG. The
samples from the posterior distribution conditioned on this dataset can be seen in Fig. S9(A). The joint distribution, shown in the
lower left-hand corner, appears fairly symmetric, indicating that µ and s are independent. There is a slight asymmetry in the
sampling of s, which can be more clearly seen in the corresponding marginal distribution to the right of the joint distribution.

For each MCMC sample of µ and s, we drew 10 samples from a normal distribution defined by these parameters. From this
collection of data sets, we computed the percentiles of the empirical cumulative distribution and plotted them over the data, as
can be seen in Fig. S9 (B). We find that the observed data falls within the 99th percentile of the generated data sets. This illustrates
that the model can produce data which is identically distributed to the actual experimental measurements, validating our choice
of statistical model.

Sensitivity Limits and Systematic Errors in Inference. Considering the results from the prior predictive checks, simulation based
calibration, and posterior predictive checks, we can say that the statistical model for inferring µ and s fold-change from a collection
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Fig. S8. Sensitivity measurements and rank statistic distribution of the statistical model estimating µ and s. (A) Posterior z-score of each inference plotted against the posterior
shrinkage factor for the parameters µ (red points) and s (black points). (B) Distribution of rank statistics for µ (red) and s (black). Gray envelope represents the 99th percentile
of a true uniform distribution.

of noisy fold-change measurements is valid and computationally tractable. Upon applying this model to the experimental data of
the wild-type strain (where the free energy is theoretically known), we observed that systematic errors arise when the fold-change
is exceptionally high or low, making the resulting inference of the free energy inaccurate.

To elucidate the source of this systematic error, we return to a simulation based approach in which the true free energy is
known [black points in Fig. S10(A)]. For a range of free energies, we computed the theoretical fold-change prescribed by Eq. (20).
For each free energy value, we pulled a value for s from the prior distribution defined in Eq. (15) and generated a data set of
10 measurements by drawing values from a normal distribution defined by the true fold-change and the drawn value of s [red
points in Fig. S10(A)]. We then sampled the statistical model over these data and inferred the mean fold-change µ [blue points in
Fig. S10(A)]. By eye, the inferred points appear to collapse onto the master curve, in many cases overlapping the true values.
However, the points with a free energy less than ⇡ �2 kBT and greater than ⇡ 2 kBT are slightly above or below the master
curve, respectively. This becomes more obvious when the inferred free energy is plotted as a function of the true free energy,
shown in Fig. S10(B). Points in which the difference between µ and the neearest boundary (0 or 1) is less than the value of s are
shown as purple or green. When this condition is met, the inferred mean free energy strays from the true value, introducing a
systematic error. This suggests that the spread of the fold-change measurements sets the detection limit of fold-change close to
either boundary. Thus, the narrower the spread in the fold-change the better the estimate of the fold-change near the boundaries.

These systematic errors can be seen in experimental measurements of the wild-type repressor. Data from Razo-Mejia et al.
2018(2) in which the IPTG titration profiles of seventeen different bacterial strains were measured is shown collapsed onto the
master curve in Fig. S10(C) as red points. Here, each point corresponds to a single biological replicate. The inferred mean
fold-change µ and 95% credible regions are shown as purple, blue, or green points. The color of these points correspond to the
relative value of µ or 1 � µ to s. The discrepancy between the predicted and inferred free energy of each measurement set can be
seen in Fig. S10(D). The significant deviation from the predicted and inferred free energy occurs past the detection limit set by s.
In this work, we therefore opted to not display inferred free energies at the extrema where the inferred fold-change was closer to
the boundaries than the correspoding standard deviation, as it reflects limitations in our measurement rather than a deviation
from the theoretical predictions.
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Fig. S9. MCMC sampling output and posterior predictive checks of the statistical model for the mean fold-change µ and standard deviation s. (A) Corner plot of sampling
output. The joint distribution between s and µ is shown in the lower left hand corner. Each point is an individual sample. Points are colored by the value of the log posterior with
increasing probability corresponding to transitions from blue to yellow. Marginal distributions for each parameter are shown adjacent to the joint distribution. (B) Percentiles of
the cumulative distributions from the posterior predictive checks are shown as shaded bars. Data on which the posterior was conditioned are shown as white circles connected
by black lines.
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Fig. S10. Identification of systematic error in simulated and real data when considering the free energy. (A) The true fold-change (black open circles), simulated fold-change
distribution (red points), and inferred mean fold-change (blue) is plotted as a function of the true free energy. Error bars on inferred fold-change correspond to the 95% credible
region of the mean fold-change µ. (B) Inferred free energy plotted as a function of the true free energy. Black line indicates perfect agreement between the ground truth free
energy and inferred free energy. Blue points correspond to the inferred free energy where the median values of the parameters satisfy the condition µ > s and 1 � µ > s.
Purple points correspond to the inferred mean fold-change µ < s. Green points correspond to those where the inferred mean fold-change 1 � µ < s. Error bars correspond to
the bounds of the 95% credible region. (C) Biological replicate data from Razo-Mejia et al. 2018 (2) (red points) plotted as a function of the theoretical free energy. Inferred
mean fold-change µ and the 95% credible region are shown as blue points. Purple and green points are colored by the same conditions as in (B). (D) Inferred free energy as a
function of the predicted free energy colored by the satisfied condition. Error bars are the bounds of the 95% credible region. All inferred values in (A - D) are the median values
of the posterior distribution.
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4. Additional Characterization of DNA Binding Mutants

In the main text, we estimated the DNA binding energy o f each mutant using the mutant strains that had approximately 260
repressors per cell. In this section, we examine the effect of the choice of fit strain on the predictions of both the induction profiles
and DF for each DNA binding domain mutant.

We applied the statistical model derived in Section 2 for each unique strain of the DNA binding mutants and estimated the
DNA binding energy. The median of the posterior distribution along with the upper and lower bounds of the 95% credible region
are reported in Table S1. We found that the choice of fitting strain did not strongly influence the estimate of the DNA binding
energy. The largest deviations appear for the weakest binding mutants paired with the lowest repressor copy number. In these
cases, such as for Q21A, the difference in binding energy between the repressor copy numbers is ⇡ 1 kBT which is small compared
to the overall DNA binding energy. Using these energies, we computed the predicted induction profiles of each mutant with
different repressor copy numbers, shown in Fig. S11. In this plot, the rows correspond to the repressor copy number of the strain
used to estimate the DNA binding energy. The columns correspond to the repressor copy number of the predicted strains. The
diagonals, shaded in grey, show the induction profile of the fit strain along with the corresponding data. In all cases, we find that
the predicted profiles are relatively accurate with the largest deviations resulting from using the lowest repressor copy number as
the fit strain.

The predicted change in free energy DF using each fit strain can be seen in Fig. S12. In this figure, the rows represent the
repressor copy number of the strain to which the DNA binding energy was fit whereas the columns correspond to each mutant. In
each plot, we have shown the data for all repressor copy numbers with the fit strain represented by white filled circles. Much as
for the induction profiles, we see little difference in the predicted DF for each strain, all of which accurately describe the inferred
free energies. The ability to accurately predict the majority of the induction profiles of each mutant with repressor copy numbers
ranging over two orders of magnitude strengthens our assessment that for these DNA binding domain mutations, only the DNA
binding energy is modified.
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Fig. S11. Pairwise comparisons of DNA binding mutant induction profiles. Rows correspond to the repressor copy number of the strain used to estimate the DNA binding
energy for each mutant. Columns correspond to the repressor copy number of the strains that are predicted. Diagonals in which the data used to estimate the DNA binding
energy are shown with a gray background.
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Fig. S12. Dependence of fitting strain on DF predictions of DNA binding domain mutants. Rows correspond to the repressor copy number used to estimate the DNA binding
energy. Columns correspond to the particular mutant. Colored lines are the bounds of the 95% credible region of the predicted DF. Open face points indicate the strain to which
the DNA binding energy was fit.
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Table S1. Estimated DNA binding energy for DNA binding domain mutants with different repressor copy numbers. Median of the posterior

distribution with the upper and lower bounds of the 95% credible region are reported.

Mutant Repressors DNA Binding Energy [kBT]

Q21A 60 �9.8+0.2
�0.2

124 �10.3+0.1
�0.1

260 �11.0+0.1
�0.1

1220 �11.3+0.1
�0.1

Q21M 60 �15.83+0.08
�0.08

124 �15.7+0.1
�0.1

260 �15.43+0.07
�0.06

1220 �15.27+0.07
�0.07

Y20I 60 �9.4+0.3
�0.3

124 �9.5+0.1
�0.1

260 �9.9+0.1
�0.1

1220 �10.1+0.2
�0.2
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5. Bayesian Parameter Estimation for Inducer Binding Domain Mutants

In the main text, we put forward two naïve hypotheses for which parameters of Eq. (7) are affected by mutations in the inducer
binding domain of the repressor. The first hypothesis was that only the inducer dissociation constants, KA and KI , were perturbed
from their wild-type values. Another hypothesis was that the inducer dissociation constants were affected in addition to the
energetic difference between the active and inactive states of the repressor, D#AI .

In this section, we first derive the statistical model for each hypothesis and then perform a series of diagnostic tests that expose
the inferential limitations of each model. With well calibrated statistical models, we then apply each to an induction profile of
the inducer binding mutant Q294K and assess the validity of each hypothesis. To understand the statistical models for each
hypothesis, only the subsection Building A Generative Statistical Model is necessary.

Building a Generative Statistical Model. For both hypotheses, we assume that the underlying physical model defined in Eq. (7)
is the same while a subset of the parameters are modified. As the fold-change measurements for each biological replicate are
statistically independent, we can assume that they are normally distributed about the theoretical fold-change value. Thus, for
each model, we must include a parameter s which is the standard deviation of the distribution of fold-change measurements. For
the first hypothesis, in which only KA and KI are changed, we are interested in sampling the posterior distribution

g(KA, KI , s | y) µ f (y | KA, KI , s)g(KA)g(KI)g(s), [27]

where y corresponds to the set of fold-change measurements. In the above model, we have assumed that the priors for KA and KI

are independent. It is possible that it is more appropriate to assume that they are dependent and that a single prior distribution
captures both parameters, g(KA, KI). However, assigning this prior is more difficult and requires strong knowledge a priori about
the relationship between them. Therefore, we continue under the assumption that the priors are independent.

The generic posterior given in Eq. (27) can be extended to evaluate the second hypothesis in which D#AI is also modified,

g(KA, KI , D#AI , s | y) µ f (y | KA, KI , D#AI , s)g(KA)g(KI)g(D#AI)g(s) [28]

where we have included D#AI as an estimated parameter and assigned a prior distribution.
As we have assumed that the fold-change measurements across replicates are independent and normally distributed, the

likelihoods for each hypothesis can be written as

f (y | KA, KI , s) ⇠ Normal{µ(KA, KI), s}, [29]

for the first hypothesis and
f (y | KA, KI , D#AI , s) ⇠ Normal{µ(KA, KI , D#AI), s}, [30]

for the second. Here, we have assigned µ(. . . ) as the mean of the normal distribution as a function of the parameters defined by
our fold-change equation, Eq. (7).

With a likelihood distribution in hand, we now turn toward assigning functional forms to each prior distribution. As we have
used in the previous sections [Sec. 2 and Sec. 3], we can assign a half-normal prior for s with a standard deviation of 0.1, namely,

g(s) ⇠ HalfNormal{0, 0.1}. [31]

It is important to note that the inducer dissociation constants KA and KI are scale invariant, meaning that a change from 0.1 µM to
1 µM yields a decrease in affinity equal to a change from 10 µM to 100 µM. As such, it is better to sample the dissociation constants
on a logarithmic scale. We can assign a log normal prior for each dissociation constant as

g(KA) =
1

KA

p
2pf2

exp

2

4�
(log KA

1 µM � µKA
)2

2f2

3

5 , [32]

or with the short-hand notion of
g(KA) ⇠ LogNormal{µKA

, f} [33]

For KA, we assigned a mean µKA
= 2 and a standard deviation f = 2. For KI , we chose a mean of µKI

= 0 and f = 2, capturing
our prior knowledge that KA > KI for the wild-type LacI. While the prior distributions are centered differently, they both show
extensive overlap, permitting mutations in which KA < KI . For D#AI , we assign a normal distribution of the prior centered at 0
with a standard deviation of 5 kBT,

g(D#AI) ⇠ Normal{0, 5}. [34]

This permits values of D#AI that are above or below zero, meaning that the inactive state of the repressor can be either more or
less energetically favorable to the active state. A standard deviation of 5 kBT permits a wide range of energies with +5 kBT and
�5 kBT corresponding to ⇡ 99.5% and ⇡ 0.5% of the repressors being active in the absence of inducer, respectively.
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Prior predictive checks. To ensure that these choices of prior distributions are appropriate, we performed prior predictive checks
for each hypothesis as previously described in Section 2. We drew 1000 values from the prior distributions shown in Fig. S13(A)
for KA, KI , and D#AI . Using the draws from the KA, and KI priors alone, we generated datasets of ⇡ 70 measurements. The
percentiles of the fold-change values drawn for the 1000 simulations is shown in the top panel of Fig. S13(B).

It can be seen that in the absence of inducer, the fold-change values are close to zero and are with distributed about the
leakiness value due to s. This is in contrast to the data sets generated when D#AI is permitted to vary along with KA and KI . In
the bottom panel of Fig. S13(B), the fold-change when c = 0 can extend above 1.0 which is possible only when D#AI is included,
which sets what fraction of the repressors is active. Under both hypotheses, the 99th percentile of the fold-change extends to just
above 1 or just below 0, which matches our intuition of how the data should behave. Given these results, we are satisfied with
these choices of priors and continue onto the next level of calibration of our model.

Fig. S13. Prior predictive checks for two hypotheses of inducer binding domain mutants. (A) Probability density functions for KA , KI , D#AI , and s. Black points correspond to
draws from the distributions used for prior predictive checks. (B) Percentiles of the simulated data sets using draws from the KA and KI distributions only (top, red bands) and
using draws from KA , KI , and D#AI (bottom, blue bands).

Simulation Based Calibration. With an appropriate choice of priors, we turn to simulation based calibration to root out any
pathologies lurking in the model itself or the implementation through MCMC. For each parameter under each model, we compute
the z-score and shrinkage of each inference, shown in Fig. S14. Under the first hypothesis in which KA and KI are the only
perturbed parameters [Fig. S14(A)], we see all parameters have z�scores clustered around 0, indicating that the value of the
ground-truth is being accurately estimated through the inference. While the shrinkage for s is close to 1 (indicating the prior is
being informed by the data), the shrinkage for KA and KI is heavily tailed with some values approaching zero. This is true for
both statistical models, indicating that for some values of KA and KI , the parameters are difficult to pin down with high certainty.
In the application of these models to data, this will be revealed as large credible regions in the reported parameters. Under the
second hypothesis in which all allosteric parameters are allowed to change, we see moderate shrinkage for D#AI [purple points
in Fig. S14(B)] with the minimum shrinkage being around 0.5. The samples resulting in low shrinkage correspond to values of
D#AI that are highly positive or highly negative, in which small changes in the active fraction of repressors cannot be accurately
measured through our model. However, the median shrinkage for D#AI is approximately 0.92, meaning that the the data highly
informed the prior distributions for the majority of the inferences. The rank distributions for all parameters under each model
appear to be highly uniform, indicating that both statistical models are computationally tractable.

With knowledge of the caveats of estimating KA and KI for both models, we proceed with our analysis and examine how
accurately these models can capture the phenomenology of the data.

Posterior Predictive Checks. With a properly calibrated statistical model for each hypothesis, we now apply it to a representative
dataset. While each model was applied to each inducer binding domain mutant, we only show the application to the mutant
Q294K with 260 repressors per cell paired with the native lac operator O2.
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Fig. S14. Simulation based calibration of statistical models for inducer binding domain mutants. (A) Sensitivity statistics and rank distribution for a statistical model in which KA

and KI are the only parameters permitted to vary. (B) Sensitivity statistics and rank distribution for a model in which all allosteric parameters KA , KI , and D#AI are allowed to be
modified by the mutation. Gray envelope in the bottom plots correspond to the 99th percentile of variation expected from a true uniform distribution.
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The results from applying the statistical model in which only KA and KI can change is shown in Fig. S15. The joint and marginal
distributions for each parameter [Fig. S15(A)] reveal a strong correlation between KA and KI whereas all other parameters are
symmetric and independent. While the joint and marginal distributions look well behaved, the percentiles of the posterior
predictive checks [Fig. S15(B)] are more suspect. While all data falls within the 95th percentile, the overall trend of the data is not
well predicted. Furthermore, the percentiles expand far below zero, indicating that the sampling of s is compensating for the
leakiness in the data being larger than it should be if only KA and KI were the changing parameters.

We see significant improvement when D#AI is permitted to vary in addition to KA and KI . Fig. S16(A) shows the joint and
marginal distributions between all parameters from the MCMC sampling. We still see correlation between KA and KI , although
it is not as strong as in the case where they are the only parameters allowed to change due to the mutation. We also see that
the marginal distribution for s has shrunk significantly compared to the marginal distribution in Fig. S15(A). The percentiles of
the posterior predictive checks, shown in Fig. S16(B) are much more in line with the experimental measurements, with the 5th
percentile following the data for the entire induction profile.

In this section we have presented two hypotheses for the minimal parameter set needed to describe the inducer binding
mutations, derived a statistical model for each, thoroughly calibrated its behavior, and applied it to a representative data set. The
posterior predictive checks [Fig. S15 and Fig. S16] help us understand which hypothesis is more appropriate for that particular
mutant. The incredibly wide percentiles and significant change in the leakiness that result from a model in which only KA and
KI are perturbed suggests that more than those two parameters should be changing. We see significant improvement in the
description of the data when D#AI is altered, indicating that it is the more appropriate hypothesis of the two.
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Fig. S15. Posterior predictive checks for inducer binding domain mutants where only KA and KI are changed. (A) MCMC sampling output for each parameter. Joint distributions
are colored by the value of the log posterior with increasing probability corresponding to transition from blue to yellow. (B) Percentiles of the data generated from the likelihood
distribution for each sample of KA , KI , and s. Overlaid points are the experimentally observed measurements.
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Fig. S16. Posterior predictive checks for inducer binding domain mutants where all allosteric parameters can change. (A) MCMC sampling output for all parameters. Joint
distributions are colored by the value of the log posterior with increasing probability corresponding to the transition from blue to yellow. Marginal distributions are shown adjacent
to each joint distribution. (B) Percentiles of the data generated from the likelihood for each sample of KA , KI , D#AI , and s. The corresponding experimental data for Q294K are
shown as black open-faced circles.
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6. Additional Characterization of Inducer Binding Domain Mutants

To predict the induction profiles of the inducer binding mutants, we used only the induction profile of each mutant paired with
the native O2 lac operator to infer the parameters. Here, we examine the influence the choice of fit strain has on the predictions of
the induction profiles and DF for each mutant.

In the main text, we dismissed the hypothesis that only KA and KI were changing due to the mutation and based the fit to a
single induction profile. In Fig. S17, the fits and predictions for each mutant paired with each operator sequence queried. Here,
the rows correspond to the operator sequence of the fit strain while the columns correspond to the operator sequence of the
predicted strain. The diagonals, colored in gray, show the fit induction profiles and the corresponding data. Regardless of the
choice of fit strain, the predicted induction profiles of the repressor paired with the O3 operator are poor, with the leakiness
in each case being significantly underestimated. We also see that fitting to O3 results in poor predictions with incredibly wide
credible regions for the other two operators. In Razo-Mejia et al. 2018 (2), we also found that fitting KA and KI to the induction
profile of O3 generally resulted in poor predictions of the other strains with comparably wide credible regions.

When D#AI is included as a parameter, however, the predictive power is improved for all three operators, as can be seen in Fig.
S18. While the credible regions are still wide when fit to the O3 operator, they are much narrower than under the first hypothesis.
We emphasize that we are able to accurately predict the leakiness of nearly every strain by redetermining D#AI whereas the
leakiness was not predicted when only KA and KI were considered. Thus, we conclude that all three allosteric parameters KA, KI ,
and D#AI are modified for these four inducer binding domain mutations. The values of the inferred parameters are reported in
Table S2.

We also examined the effect the choice of fit strain has on the predicted DF, shown in Fig. S19. We find that the predictions
agree with the data regardless of the choice of fit strain. One exception is the prediction of the Q294K DF when the parameters
fit to the O3 induction profile are used. As the induction profile for Q294K paired with O3 is effectively flat at a fold-change of
1, it is difficult to properly estimate the parameters of our sigmoidal function. We note all measurements of DF for Q294K are
described by using either the parameters fit to either O1 or O3 induction profiles, suggesting that the choice of fit strain makes
little difference.
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Fig. S17. Pairwise comparison of fit strain versus predictions assuming only KA and KI are influenced by the mutation. Rows correspond to the operator sequence of the strain
used for the parameter inference. Columns correspond to the operator sequence of the predicted strain. Colors identify the mutation. Diagonal positions (gray background)
show the induction fit strain and profiles.
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Fig. S18. Pairwise comparison of fit strain versus predictions assuming all allosteric parameters are affected by the mutation. Rows correspond to the operator of the strain
used to fit the parameters. Columns correspond to the operator of the strains whose induction profile is predicted. Mutants are identified by color. Diagonals (gray background)
show the induction profiles of the strain to which the parameters were fit.
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Fig. S19. Comparison of choice of fit strain on predicted DF profiles. Rows correspond to the operator of the strain to which the parameters were fit. Columns correspond to
mutations. Points are colored by their operator sequence. The data corresponding to the operator of the fit strain are shown as white-faced points.
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Table S2. Inferred values of KA, KI , and D#AI for inducer binding domain mutants. Values reported are the mean of the posterior distribution

with the upper and lower bounds of the 95% credible region.

Mutant Operator KA [µM] KI [µM] D#AI [kBT]

F164T O1 290+60
�56 1+4

�0.98 4+5
�3

O2 165+90
�65 3+6

�3 1+5
�2

O3 110+700
�105 7+5

�4 �0.9+0.4
�0.3

Q294K O1 > 1 mM 410+150
�100 �3.2+0.1

�0.1

O2 > 1 mM 310+70
�60 �3.11+0.07

�0.07

O3 10+200
�10 1+9

�1 �7+3
�5

Q294R O1 3+27
�3 2+20

�2 �1.9+0.4
�0.3

O2 9+20
�9 8+20

�8 �2.32+0.01
�0.09

O3 6+24
�6 9+30

�9 �2.6+0.4
�0.5

Q294V O1 > 1 mM 3+13
�3 6+4

�4

O2 650+450
�250 8+8

�8 3+6
�3

O3 100+400
�90 22+33

�18 0.1+0.8
�0.6
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7. Parameter Estimation Using All Induction Profiles

In the main text and Sec. 4 and 6 of this supplementary text, we have laid out our strategy for inferring the the various parameters
of our model to a single induction profile and using the resulting values to predict the free energy and induction profiles of other
strains. In this section, we estimate the parameters using all induction profiles of a single mutant and using the estimated values
to predict the free energy profiles.

The inferred DNA binding energies considering induction profiles of all repressor copy numbers for the three DNA binding
mutants are reported in Tab. S3. These parameters are close to those reported in Tab. S1 for each repressor copy number with
Q21A showing the largest differences. The resulting induction profiles and predicted change in free energy for these mutants can
be seen in Fig. ??. Overall, the induction profiles match the data to an appreciable agree. We acknowledge that even when using
all repressor copy numbers, the fit to Q21A remains imperfect. However we contend that this disagreement is comparable to
that observed in (2) which described the induction profile of the wild-type repressor. We find that the predicted change in free
energy [bottom row in Fig. ??(B)] narrows compared to that in Fig. S12 and Fig. 3 of the main text, confirming that considering all
induction profiles improves our inference of the most-likely DNA binding energy. There appears to be a very slight trend in the
DF for Q21A at higher inducer concentrations, though the overall change in free energy from 0 to 5000 µM IPTG is small.

We also estimated the allosteric parameters (KA, KI , and D#AI) for all inducer binding domain mutations using the induction
profiles of all three operator sequences. The values, reported in Tab. S4 are very similar to those estimated from a single induction
profile (Tab. S2). We note that for Q294R, it is difficult to properly estimate the values for KA and KI as the observed induction
profile is approximately flat. The induction profiles and predicted change in free energy for each inducer binding mutant is shown
in Fig. S21. We see notable improvement in the agreement between the induction profiles and the observed data, indicating that
considering all data significantly shrinks the uncertainty of each parameter. The predicted change in free energy is also improved
compared to that shown in Fig. S19. We emphasize that the observed free energy difference for each point assumes no knowledge
of the underlying parameters and comes directly from measurements. The remarkable agreement between the predicted free
energy and the observations illustrates that redetermining the allosteric parameters is sufficient to describe how the free energy
changes as a result of the mutation.
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Table S3. Estimated DNA binding energies for each DNA binding domain mutant using all repressor copy numbers

Mutant D#RA [kBT]

Y20I �9.81+0.04
�0.08

Q21A �10.60+0.07
�0.07

Q21M �15.61+0.05
�0.05
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Fig. S20. Induction profiles and predicted change in free energy using parameters estimated from the complete data sets. Top row shows fold-change measurements (points)
as mean and standard error with ten to fifteen biological replicates. Shaded lines correspond to the 95% credible regions of the induction profiles using the estimated values of
the DNA binding energies reported in Tab. S3. Bottom row shows the 95% credible regions of the predicted change in free energy (shaded lines) along with the inferred free
energy of data shown in the top row. In all plots, the inducer concentration is shown on a symmetric log scale with linear scaling between 0 and 10�2 µM and log scaling
elsewhere.
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Table S4. Estimated values for KA, KI , and D#AI for inducer binding domain mutations using induction profiles of all operator sequences.

Mutant KA [µM] KI [µM] D#AI [kBT]

F164T 300+60
�60 12.7+0.1

�0.1 �0.9+0.3
�0.3

Q294K > 1 mM 330+60
�70 �3.17+0.07

�0.07

Q294R > 1 mM > 1 mM �2.4+0.2
�0.2

Q294V > 1 mM 53+17
�13 0+0.3

�0.3
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Fig. S21. Induction profiles and predicted change in free energy using parameters estimated from the complete data sets for inducer binding domain mutnats. Top row shows
fold-change measurements (points) as mean and standard error with ten to fifteen biological replicates. Shaded lines correspond to the 95% credible regions of the induction
profiles using the estimated values of the allosteric parameters reported in Tab. S4. Bottom row shows the 95% credible regions of the predicted change in free energy (shaded
lines) along with the inferred free energy of data shown in the top row. In all plots, the inducer concentration is shown on a symmetric log scale with linear scaling between 0
and 10�2 µM and log scaling elsewhere.
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Strain and Oligonucleotide Information

Table S5. Escherichia coli strains used in this work

Class LacI Mutant Operator Rep. per Cell Genotype Plasmid

– – – 22 MG1655::DlacZYA pZS4*1-mCherry
– – O1 0 MG1655::DlacIZYA;galK <>25O1+11-YFP pZS4*1-mCherry
– – O2 0 MG1655::DlacIZYA;galK <>25O2+11-YFP pZS4*1-mCherry
– – O3 0 MG1655::DlacIZYA;galK <>25O3+11-YFP pZS4*1-mCherry
WT WT O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI pZS4*1-mCherry
DNA Y20I O2 60 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1147LacI(Y20I) pZS4*1-mCherry
DNA Y20I O2 124 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS446LacI(Y20I) pZS4*1-mCherry
DNA Y20I O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Y20I) pZS4*1-mCherry
DNA Y20I O2 1220 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1LacI(Y20I) pZS4*1-mCherry
DNA Q21A O2 60 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1147LacI(Q21A) pZS4*1-mCherry
DNA Q21A O2 124 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS446LacI(Q21A) pZS4*1-mCherry
DNA Q21A O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Q21A) pZS4*1-mCherry
DNA Q21A O2 1220 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1LacI(Q21A) pZS4*1-mCherry
DNA Q21M O2 60 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1147LacI(Q21M) pZS4*1-mCherry
DNA Q21M O2 124 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS446LacI(Q21M) pZS4*1-mCherry
DNA Q21M O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Q21M) pZS4*1-mCherry
DNA Q21M O2 1220 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1LacI(Q21M) pZS4*1-mCherry
IND F164T O1 260 MG1655::DlacIZYA;galK <>25O1+11-YFP;ybcN<>3*1-RBS1027LacI(F164T) pZS4*1-mCherry
IND F164T O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(F164T) pZS4*1-mCherry
IND F164T O3 260 MG1655::DlacIZYA;galK <>25O3+11-YFP;ybcN<>3*1-RBS1027LacI(F164T) pZS4*1-mCherry
IND Q294V O1 260 MG1655::DlacIZYA;galK <>25O1+11-YFP;ybcN<>3*1-RBS1027LacI(Q294V) pZS4*1-mCherry
IND Q294V O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Q294V) pZS4*1-mCherry
IND Q294V O3 260 MG1655::DlacIZYA;galK <>25O3+11-YFP;ybcN<>3*1-RBS1027LacI(Q294V) pZS4*1-mCherry
IND Q294K O1 260 MG1655::DlacIZYA;galK <>25O1+11-YFP;ybcN<>3*1-RBS1027LacI(Q294K) pZS4*1-mCherry
IND Q294K O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Q294K) pZS4*1-mCherry
IND Q294K O3 260 MG1655::DlacIZYA;galK <>25O3+11-YFP;ybcN<>3*1-RBS1027LacI(Q294K) pZS4*1-mCherry
IND Q294R O1 260 MG1655::DlacIZYA;galK <>25O1+11-YFP;ybcN<>3*1-RBS1027LacI(Q294R) pZS4*1-mCherry
IND Q294R O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Q294R) pZS4*1-mCherry
IND Q294R O3 260 MG1655::DlacIZYA;galK <>25O3+11-YFP;ybcN<>3*1-RBS1027LacI(Q294R) pZS4*1-mCherry
DBL Y20I-F164T O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Y20IF164T) pZS4*1-mCherry
DBL Y20I-Q294V O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Y20IQ294V) pZS4*1-mCherry
DBL Y20I-Q294K O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Y20IQ294K) pZS4*1-mCherry
DBL Q21A-F164T O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Q21AF164T) pZS4*1-mCherry
DBL Q21A-Q294V O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Q21AQ294V) pZS4*1-mCherry
DBL Q21A-Q294K O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Q21AQ294K) pZS4*1-mCherry
DBL Q21M-F164T O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Q21MF164T) pZS4*1-mCherry
DBL Q21M-Q294V O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Q21MQ294V) pZS4*1-mCherry
DBL Q21M-Q294K O2 260 MG1655::DlacIZYA;galK <>25O2+11-YFP;ybcN<>3*1-RBS1027LacI(Q21MQ294K) pZS4*1-mCherry

Table S6. Oligonucleotides used for mutant generation.

Primer Name Sequence (5’!3’) Description Method

10.1 acctctgcggaggggaagcgtgaacctctcacaagacggcatcaaattacactagcaacaccagaacagc Integration into ybcN locus l-Red Recombineering
10.3 ctgtagatgtgtccgttcatgacacgaataagcggtgtagccattacgccggctaatgcacccagtaagg Integration into ybcN locus l-Red Recombineering
GCMWC-001 ccggcatactctgcgaca Amplification of plasmid QuickChange Mutagenesis
GCMWC-002 gtgtctcttatATGaccgtttcccgc Q21M Mutation (CAG!ATG) QuickChange Mutagenesis
GCMWC-003 tgtctcttatGCGaccgtttcccgc Q21A Mutation (CAG!GCG) QuickChange Mutagenesis
GCMWC-004 gttaacggcgggatataac Amplification of plasmid QuickChange Mutagenesis
GCMWC-005 caccatcaaaGTGgattttcgcctgc Q294V Mutation (CAG ! GTG) QuickChange Mutagenesis
GCMWC-006 caccatcaaaAAGgattttcgcc Q294K Mutation (CAG!AAG) QuickChange Mutagenesis
GCMWC-007 cagtattattACCtcccatgaagacgg F164T Mutation (TTC!ACC) QuickChange Mutagenesis
GCMWC-008 ttgatgggtgtctggtcag Amplification of plasmid QuickChange Mutagenesis
GCMWC-009 gcatactctgcgacatcgtataa Amplification of plasmid QuickChange Mutagenesis
GCMWC-010 cggtgtctctATTcagaccgtttc Y20I Mutation (TAT!ATT) QuickChange Mutagenesis
GCMWC-017 ccatcaaaAGGgattttcgcctgctggggcaaaccag Q294R Mutation (CAG!AGG) Gibson Assembly
GCMWC-018 ggcgaaaatcCCTtttgatggtggttaacggcggg Q294R Mutation (CTG!CCT) Gibson Assembly
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