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1986] NOTES 191
TIETZE EXTENSION THEOREM. If M is a closed subset of a normal space X, then any bounded

continuous real-valued function on M may be extended to a continuous function on X with the same

bound.

Proof. Let T be the restriction map from the space of bounded continuous functions on X to
the space of bounded continuous functions on M. When these function spaces are given the sup
norms, T becomes a bounded operator. We will verify that T satisfies the hypothesis of the
Approximation Lemma with m = 1/3 and r = 2/3 by repeating the first step of the standard
proof of the Tietze Extension Theorem [1, Theorem 3.2, p. 212]. Suppose that g is a continuous
function on M with sup norm 1. Let A = g-1[-1, -1/3] and B = g-1[1/3, 1]. By Urysohn's
lemma, there is a continuous function f from X to [-1/3,1/3] with f identically equal to - 1/3
on A and to 1/3 on B. Then Ilf 11 = 1/3 and IITf - gll < 2/3. This completes the proof.

Another form of the Approximation Lemma [2, Lemma 4.13(a), p. 94-95], which is useful in
operator theory, states that if B1 and B2 are open balls about the origins in E and F,
respectively, and if T(B1) : B2, then T(B1) : B2. This follows easily by applying the form of
the Approximation Lemma proved above to a sequence { rn } with limit 0.
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THE PROBABILITY OF HEADS*

JOSEPH B. KELLER

Departments of Mathematics and Mechanical Engineering, Stanford University, Stanford, CA 94305

1. Introduction. Why is the outcome of a coin toss considered to be random, even though it is
uniquely determined by the laws of physics and the initial conditions? If it is random, why is there
a definite probability associated with each outcome, regardless of how the coin is tossed? Finally,
if there is a definite probability for each outcome, how can it be calculated? We shall try to answer

these questions by analyzing the motion of a tossed coin. Then we shall extend our considerations
to a wheel and other "chance" devices.

2. Mechanics of a tossed coin. Let us consider a circular coin of radius a and negligible
thickness, one side of which is marked heads and the other side tails. We assume that the center of

gravity of the coin is at its geometrical center, the height of which we denote y(t) at time t. Then

Newton's equation for the vertical motion of the center of gravity of the coin is(1) d2y( t)
dt2 g

Here the positive constant g is the acceleration of gravity. To supplement (1) we suppose that
initially, at time t = 0, the center of the coin is at height a and that it has an upward velocity u.
Thus we have the initial conditions

dy (0)_(2) y(0) = a, t .
The differential equation (1) and the initial conditions (2) determine y(t). Instead of y(O) = a we
could have prescribed any other initial value. This particular choice will simplify some of the
subsequent calculations.

*Research supported by the Office of Naval Research, the Air Force Office of Scientific Research, the Army
Research Office, and the National Science Foundation.
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192 JOSEPH B. KELLER [March
In addition to its vertical motion, the coin is assumed to be rotating about a horizontal axis

that lies along a diameter of the coin. We shall choose the z-axis to be parallel to this rotation
axis. Then we can describe the angular position of the coin at time t by the angle 9(t) between
the positive y-axis and the normal to the side of the coin marked heads, both of which lie in the
x,y plane. (See Fig. 1.) Now the equation governing the rotational motion of the coin is simply

(3) d 29(t) = 0
y

/a

0 vx
FIG. 1. The x, y plane intersects the coin along a diameter of length 2a. The normal to the side of the coin marked
heads makes the angle 0 with the positive y-axis.

We assume that initially the coin is horizontal with side heads up, so that 0 (0) = 0, and that it has
the positive angular velocity w. Thus we specify the initial conditions

(4) 0(0) =0 do 0)
dit

Here also we could have replaced 9(0) = 0 by any other initial value, but this choice will simplify
our calculations.

The solutions of (1) and (2) for y(t) and of (3) and (4) for 0(t) are

gt2(5) y(t) = ut-2 +a,(6) 0(t) = cot.
These equations hold from t = 0 until the first time to > O at which the coin lands on a surface,
which we take to be the plane y = 0. We shall assume that whichever side of the coin is up at to
remains up. This will be the case if the coin lands in sand or mud, but not if it lands on a hard
surface where it will bounce, roll, etc. Thus the coin will end its motion with heads up if

(7) 2n7r- < (to) < 2nr + n =0,1,2.
To find to, we consider the lowest point of the coin at time t, which is at y (t) - a lsin 0 (t) 1.

Then to is the smallest positive root of the equation

(8) y( to) - alsin 9( to) I = 0.
3. The pre-image of heads. We shall now analyze (7) and (8) to find out if the coin ends up

heads for given values of the initial velocity u and the initial angular velocity w. The set of all
pairs u, X of nonnegative values for which it ends up heads, we shall call the pre-image of heads
in the u, X plane, and we shall denote it H. First we consider the end points of the intervals in
(7), which are given by 9(to) = (2n + 2)7T. At them (6) yields

(9) coto = (2n +?I .
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1986] NOTES 193
Now since sin #(to) = ? 1, (8) becomes y(to) - a = 0. When (5) .is used in this equation it
becomes

(10) ut -gt2/2 - 0.
The positive solution of (10) is to = 2u/g. Then we use this result in (9) to obtain

(11) X~~~~c = (2n + I ) Tg n = O 1 2.

The relation (11) corresponds to the endpoints of the intervals in (7), and therefore it
determines the boundaries of the region H in the u, w plane. This relation is graphed in Fig. 2 for
many values of n. Each curve is a hyperbola. On the axis w = 0 heads remains up throughout the
toss, so this axis and the adjacent strip lie in H. The next strip lies in T, the pre-image of tails, and

the successive strips alternate between H and T, as we can see by examining (7).

3 LX

5 10
u/g

FIG. 2. The curves which separate the sets H and T, the preimages of heads and tails in the u, w plane of initial
conditions, are shown for various values of n. These are based upon (11), with the abscissa being u/g. The lowest
strip, adjacent to the axes, belongs to H, the next to T and so on alternately.

From (11) we find that the vertical separation between any two adjacent boundary curves is
7Tg/2 u, except that the lowest one is only 7Tg/4 u above the axis. Thus the strips are of equal
vertical width, and this width tends to zero as u increases.

In order to find where actual tosses lie on this figure, we can consider the maximum height h
to which a coin rises. From (5) we find that dy/dt = 0 at tm = u/g, and that

h =y(te,) = u2/2g+ a.

Thus u = [2g(h - a)]'/2. Now g = 32 feet per second2, so if h - a = 1 foot we find u = 8
ft/sec and t = u/g = 1/4 sec.

To find co Professor Persi Diaconis observed a number of typical tosses of a coin under
stroboscopic illumination, and found that co 38 revolutions/sec = 38(2T) radians/sec. The
number of revolutions per toss is

n = xto = 2uw/g 2(38) revs/toss = 19 revs/toss.

Thus the point (u/g, co) = ((1/4) sec, 76 g/sec) is way above the region shown in Fig. 2. It lies
near the lines corresponding to n = 19 in (9).

4. The probability of heads. So far we have determined the sets H and T in the u, co plane,
which are the pre-images of heads and tails respectively. Now we suppose that the initial condition
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194 JOSEPH B. KELLER [March
u, co is a random variable with a continuous probability density p(u, co) with support in the
region u > 0, w > 0. Then the probability of heads PH is given by

(12) PH =ffP(u, a) dudc.
Thus the outcome is random because we have assumed that the initial conditions are random. This
is the answer to the first question we asked in the introduction.

For any value PH in the interval zero to one, there are densities p for which the integral in (12)

has that value. Thus (12) does not seem to place any restriction on PH. However, we shall now
show that when the support of p is shifted to sufficiently large values of u, and possibly to large
values of a also, then PH tends to a fixed limit which is independent of the density p (u, a). This
is the content of the following theorem.

THEOREM 1. Let p (u, c) be a continuous probability density with support in the region u > 0,
X > 0, and let /P be a fixed constant satisfying 0 < ,B < T/2. Then

(13) lim P = lim fP(u - Ucos,B, w - a-'UsinP) da du= 2U U- oo H2
Proof. The proof is given in the appendix, although the conclusion is evident from Fig. 2.

The significance of this theorem is that there is a unique probability of heads which is
approximately achieved by any continuous probability density of the initial values u, X that is
shifted to sufficiently large values of u and w. The approximation improves as the density
p ( u, w) is translated to larger values of u and w.

The limiting value of PH is 1/2, despite the fact that the initial condition is not symmetric in
heads and tails, since the coin always starts out with heads up. Therefore the traditional method of

calculating PH, based upon symmetry, is not applicable.
The reason why P. has a limit as U increases is that the pre-images H and T both consist of

many strips which become very narrow at infinity. Thus both H and T occupy fixed fractions of
the area of any disk which is shifted to infinity. This answers the second question in the
introduction. By calculating those fractions we get the limiting values of PH and PT, which
answers the third question in the introduction.

5. Wheels. Another common gambling device, which is often used in carnivals, is a rotating
wheel with numbers marked along its outer edge, and a pointer. The wheel is spun and ultimately
comes to rest, with the number indicated by the pointer being the winning number. Usually there

are nails between adjacent numbers which are hit by the pointer, to aid in slowing down and
stopping the wheel, and to make clear which number is indicated by the pointer when the wheel
stops. We shall ignore the nails, and analyze the motion of the wheel.

The angular position of the wheel can be described by specifying the angular distance 0 from
the pointer to some mark on the wheel. Let 9(t) be this angle at time t. To determine 9(t), we
assume that there is a constant frictional torque retarding the motion, and that this frictional
torque vanishes when the wheel comes to rest. Then while the wheel is turning in the counterclock-

wise direction, so that 9(t) is increasing with t, its equation of motion is

(14)t ) = _<x, 0 d tt< to.
Here a is a positive constant equal to the retarding torque divided by the moment of inertia of the

wheel, and to is the first time at which the wheel comes to rest. Thus(15) d(to) =0.15) ~~~~~~~~~~dt
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1986] NOTES 195
We assume that initially the mark is under the pointer, so that 0(0) = 0, and that the wheel has

an initial angular velocity co > 0. Thus

(16) 0(0) =0, dO (0) _
dt

The solution of (14) and (16) is

(17) 0(t)=ct-at2/2, 0<t to.
To find to we use (17) in (15) to get co -to = 0. Thus to = /ca and (17) yields

(18) 0(to) = 2a-
Now (18) gives the final position of the mark, since the wheel stops moving at to.

Let us now solve (18) for X to find which points on the positive &-axis correspond to a given
final position 0. To do so we set 0(to) = 0 + 2n7T in (18) with n = 0,1,2..., since all such
coordinates represent the same position of the wheel. Then the solution of (18) yields

(19) c = [2a(0 + 2nT)]1/2, n = 0,1,2,....
This set is the pre-image of 0 on the positive )-axis, which is the set of initial conditions. From
(19) we find that for large n the spacing between successive values of co,, is

(20) n j [I + O( -
Thus the &n become ever more closely spaced as n increases.

Now we suppose that X is random with a continuous probability density p ( ) which vanishes
for X < 0. Then the corresponding probability density P(0) of 0 is

00 0)] dcon(0) _ 0
(21) P(0) = E P[Wn()] dO a E p [ ,, (0)] /W, (0).n=O n=O
When p ( ) is shifted to larger values of X by the amount Q, (21) yields

00

(22) P2(0) = aL P[ Cn( 0) -Q] /n,(0)
n=O

In the appendix we obtain from (22) the following result:

THEOREM 2. If p (c) is a continuous probability density which vanishes for co < 0, then

(23) lim PQ(0) 1
Thus in this case also there is a unique probability distribution of the outcome that results

approximately from any initial density p( c) which has its support shifted to sufficiently large
values of w. Again the limit distribution is what would be given by a symmetry argument,
although the initial condition is not symmetric because 0(0) = 0.

6. Other chance devices. We shall now consider any mechanical device used in a game of
chance. We assume that its motion is determined by the laws of mechanics and its initial
condition, which we denote u. We also assume that its possible final states can be partitioned into
a finite collection of subsets S1, S2,... Sn, each of which we identify with one outcome or event
also denoted S1, S2,... Sn. The laws of mechanics determine a unique final state corresponding to
each initial condition u. All those initial conditions which lead to a final state in the set S, we call
the pre-image of the outcome S,. We denote the pre-image of S, by H,.

Now we suppose that there is a probability density p(u) defined on the space of initial
conditions. Then the probability P, of outcome Si is given by
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196 JOSEPH B. KELLER [March
(24) P, = p(u) du.
The question we consider is "When is P, independent of the particular probability density p ( u);
and if it is independent, what is the value of P,?"

The preceding examples of coin tossing and wheel spinning suggest an answer. It is to consider
the behavior of the H, at infinity in the space of initial conditions. Suppose that a fixed fraction f,

of the volume of any small region at infinity is contained in H,. Then it follows from (24) that P,
will have the limit fi as p(u) is shifted to infinity.

The meaning of this conclusion is that when the H, have the required property, "any"
probability density of initial conditions concentrated at very large initial conditions will yield
nearly the same probabilities P, = f, of the various outcomes. Whether or not the H, do have the
requisite property, and what the fractions f, are, can be decided in principle by analyzing the
mechanical behavior of the device.

7. Some related work. Poincare [1] treated a model of the roulette wheel which led to results
like those in Section 5, although it does not involve any mechanics. His results and some related
ones are mentioned in Feller [2]. Smoluchowski [3] presented similar ideas. Then Hopf [4], [5]
introduced concepts from mechanics into the calculation of probabilities, and a point of view just
like the one we have described. Recently Thorp [6] has used mechanical considerations in
analyzing roulette.

Acknowledgement. It is a pleasure to thank Professor Persi Diaconis for raising a question
about the face probabilities of noncubical dice which led me to think about this subject, and for
permitting me to quote his measurements of the rotation rates of tossed coins.

Appendix. We shall now indicate the proofs of the two theorems.

Proof of Theorem 1. We first write the integral in (13) as an iterated integral, and use (11) to
determine the range of co' = X - a -'U sin/3:

(Al) PH = f 1(2 n + 1/2) f Tg/2 u - aU sin p ( U- U cos t,c') d c' du.
Ucos, n = 0 (2n - 12)gg/2 u-aU sin,8

The lower limit of u is Ucos /3 because p = 0 for u - Ucos /3 < 0. As U tends to infinity, so
does u provided that ,B < 7T/2. Then the range of each integral over c' is of length O(U-1).
Therefore we can approximate each of these integrals by the length of the interval multiplied by
the value of the integrand at the midpoint. The error in this approximation is O(U- 1). Thus we
can rewrite (Al) as

(A2) PH Zp(u - Ucos/3, 27g) 2g[1 + o(1)] du.

As U becomes infinite, the sum in (A2) converges to one half the Riemann integral of p with
respect to co'. This is clear if p has compact support, and if not it follows by approximating p by
a sequence of functions with compact support. Thus we have

(A3) PH =| 2 p(u- Ucos/3,cc') dw'du[1 + o(l)].
Ucos/3 0

Upon setting u' = u - U cos ,B in (A3), and remembering that the integral of p is one, we get

(A4) PH = f f p(u', c') dw' du'[I + o(1)] = J[1 + o(1)].

When U tends to infinity, o(l) tends to zero, and (A4) yields the result in (13). For /B = s/2 we
introduce u' = u - Ucos /B instead of cc' and then the proof is similar to that above.
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Proof of Theorem 2. By using (20) for to, we can write (22) as

00

(A5) P (C) = 2o" p[t7(O) - Q][ (O) - Co (O)][i + 0(to2)I
PUM~~~t 1=0

Then we write w (0) = t, (0) - 2, and note that p(w,, - Q) = 0 for to, < Q. Thus we can write
(A5) as

100
(A6) PQ(O) =- 2 [ w7(Q)][ w () ()] [I + O( Q2)].

2 rn=O

Now w%+l wn = tno+l - con = O(o, 1), and w7, > Q whenever p(co,, - 2) > 0. Therefore w +
WI, = 0(Q-1), and the sum in (A6) converges to the Riemann integral of p as 2 becomes

infinite. Since this integral is one, (A6) yields (23).
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ANCESTORS, CARDINALS, AND REPRESENTATIVES

T. D. PARSONS

Department of Mathematics, California State University, Chico, CA 95929-0525

1. Introduction. Occasionally we come across a proof so charming that it is as memorable or
more so than the theorem it proves. One such is the "parent-ancestor-descendant" proof of the
Schroeder-Bernstein Theorem which appeared in Birkhoff and Mac Lane [2] and has ever since
been a favorite of college mathematics audiences. This proof is a clever restatement of an
argument of S. Banach [1], and it demonstrates the value of picturesque terminology in good
mathematical exposition. In our expository note here, we apply the same proof to obtain a more
general theorem (Theorem 1 below) and show how to derive as its corollaries not only Banach's
mapping theorem and the Schroeder-Bernstein Theorem, but also some results of Mendelsohn and
Dulmage [6], R. Rado [7, Theorem 4.3], and Hoffman and Kuhn [5] about systems of distinct
representatives for families of sets.

Theorem 1 is due to Ore [8] and independently to Perfect and Pym [9], whose version we state
first.

THEOREM 1. Let X' c X, Y' C Y? and E c X X Y be sets. Suppose that there exist injective
mappfngs f : X' -- Y and g: Y' -- X such that (x, f(x)) C E and (g(y), y) C E for all x C X'
and y c Y'. Then there exist sets Xo, Yo with X' c XO c X and Y' c YO C Y and a biection
h: XQ YO such that (x, h(x)) E E for all xE XO.

Ore's version, which is more convenient for certain applications, is stated (Theorem 1') in the
language of bipartite graphs. Here we consider X, Y to be disjoint sets of vertices forming the
bipartition for the bipartite graph B with edge-set E-that is, vertex x is adjacent to vertex y if
(x, y) E E. A subset S c E of edges is said to be incident to a subset X' of X (respectively, Y'
of Y) if every element of X' (Y') is an end-point of some edge (x, y) of S. A set M c E is
independent if no two edges of M share a common endpoint (i.e., M is a "matching" in B).

THEOREM 1'. Let B = [X, Y] be a bipartite graph with edge-set E c X X Y. Suppose that
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