
Real-Time Kinetics of Gene Activity
in Individual Bacteria
Ido Golding,1,* Johan Paulsson,2,3 Scott M. Zawilski,1 and Edward C. Cox1,*
1Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
2Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom
3Present address: Department of Systems Biology, Harvard University, Boston, MA 02108, USA.
*Contact: igolding@princeton.edu (I.G.); ecox@princeton.edu (E.C.C.)
DOI 10.1016/j.cell.2005.09.031
SUMMARY

Protein levels have been shown to vary sub-
stantially between individual cells in clonal
populations. In prokaryotes, the contribu-
tion to such fluctuations from the inherent
randomness of gene expression has largely
been attributed to having just a few tran-
scriptsofthecorrespondingmRNAs.Bycon-
trast, eukaryotic studies tend to emphasize
chromatin remodeling and burst-like tran-
scription. Here, we study single-cell tran-
scription in Escherichia coli by measuring
mRNA levels in individual living cells. The
results directly demonstrate transcriptional
bursting, similar to that indirectly inferred
foreukaryotes.WealsomeasuremRNApar-
titioning at cell division and correlate mRNA
and protein levels in single cells. Partition-
ing is approximately binomial, and mRNA-
protein correlations are weaker earlier in the
cell cycle, where cell division has recently
randomized the relative concentrations. Our
methods further extend protein-based ap-
proaches by counting the integer-valued
number of transcript with single-molecule
resolution. This greatly facilitates kinetic in-
terpretations in terms of the integer-valued
random processes that produce the fluctua-
tions.

INTRODUCTION

Gene expression involves a succession of probabilistic

events: DNA continually undergoes conformational changes,

repressors and transcription factors randomly bind and fall off

their operators and promoters, and transcription and transla-

tion are complex at the levels of initiation, elongation, and

termination (Kaern et al., 2005). Even in a hypothetically con-
Cell
stant and homogeneous intracellular environment, this com-

plexity would produce random fluctuations in the number of

mRNAs and proteins per cell, constituting ‘‘noise’’ that cells

must either exploit, learn to live with, or overcome using var-

ious noise-suppression mechanisms.

The last three decades have seen numerous probabilistic

models of gene expression. Most fall into one of two catego-

ries. Some focus on how spontaneous small-number Pois-

son fluctuations in mRNA levels enslave the levels of their en-

coded proteins, possibly through bursts of translation (Berg,

1978; McAdams and Arkin, 1997; Rigney, 1979a, 1979b;

Swain et al., 2002; Thattai and van Oudenaarden, 2001).

Others instead focus on how mRNA fluctuations in turn are

enslaved by random changes in gene activity and possible

bursts of transcription (Blake et al., 2003; Kepler and Elston,

2001; Peccoud and Ycart, 1995; Raser and O’Shea, 2004;

Sasai and Wolynes, 2003; Tapaswi et al., 1987).

The corresponding experimental interpretations have been

similarly divided between these two categories.Thefirst quan-

titative study, using a single GFP reporter in Bacillus subtilis,

interpreted the results in terms of small-number mRNA fluc-

tuations and translation bursts (Ozbudak et al., 2002). A sec-

ond E. coli study used correlations between dual fluorescent

reporters and similarly interpreted the inherent randomness

of gene expression (termed ‘‘intrinsic noise’’) in terms of

small-number mRNA fluctuations (Elowitz et al., 2002; Swain

et al., 2002). In eukaryotes, on the other hand, the first single-

reporter study in Saccharomyces cerevisiae suggested

a substantial contribution from chromatin remodeling, pro-

ducing quantal transcription bursts (Blake et al., 2003). A fol-

low-up dual-reporter study (Raser and O’Shea, 2004) in

S. cerevisiae greatly elaborated on these results and also

suggested a substantial contribution from transcriptional

bursting. Because chromatin remodeling is eukaryote spe-

cific, this has been suggested as a possible difference

between these two domains of life (Blake et al., 2003).

A difficulty when analyzing the randomness of gene ex-

pression is that existing single-cell techniques only allow ac-

curate quantitation of protein levels, while mRNA fluctuations

are at best estimated qualitatively (Le et al., 2005; Tolker-

Nielsen et al., 1998). Another difficulty is that single mole-

cules of GFP are generally undetectable in vivo due to back-

ground fluorescence. With rare exceptions (Rosenfeld et al.,

2005), fluorescence data therefore do not report the actual
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number of molecules but rather a quantity that is roughly pro-

portional to that number. This makes it harder to test sto-

chastic models critically, where relative fluctuations depend

on average numbers. Furthermore, the important molecules

to count are the ones that contribute small-number fluctua-

tions. If proteins are present in thousands of copies and pro-

tein fluctuations instead come from having low numbers of

the corresponding mRNAs, then it is the mRNA that must

be counted. Many studies have indeed attributed protein

randomness to the low number of transcripts, but these

studies were indirect, typically estimating protein distribu-

tions, altering experimental parameters, and using models

to infer the source of fluctuations from the changes in the var-

iance. This is in principal a valid approach and has produced

many important insights, but a serious problem is that the

same type of response in the variance tends to be consistent

with very different kinetic explanations (Paulsson, 2004).

Here, we address transcriptional bursting in prokaryotes

by directly counting the integer-valued number of stabilized

mRNA transcripts in living E. coli cells, i.e., without ‘‘filtering’’

transcriptional fluctuations through RNA degradation, trans-

lation into proteins, proteolysis, and chromophore matura-

tion. We also measure the physiological parameters of

transcription with multiple methods and check all model as-

sumptions quantitatively. The fluctuations in transcription are

shown to scale as a Poisson process (variance proportional

to average) but with substantially larger fluctuations. The

fluctuations appear to come from transcriptional bursting,

as suggested for eukaryotes. We also directly observe bursts

from time-series data and show that the estimated distribu-

tions of both bursts and waiting times between events are

perfectly consistent with expectations from the simplest

models. Finally, by quantitatively comparing our findings to

those of previous prokaryotic studies (Elowitz et al., 2002;

Ozbudak et al., 2002) we show that the raw data sets are

perfectly consistent and that the present results extend the

conclusions by identifying the source of mRNA fluctuations.

In addition to the transcription results, we also study RNA

partitioning at cell division and correlations between the lev-

els of mRNAs and their encoded proteins. Partitioning is ap-

proximately binomial—as when individual transcripts seg-

regate independently to identical daughters. The average

number of proteins in a cell is shown to be proportional to

the average number of mRNAs encoding that protein, some-

thing that is often assumed but rarely measured directly

(for exceptions see Khodursky et al. [2000] and Lee et al.

[2003]). In single cells, the correlations between mRNA and

proteins were significantly weaker in more recently divided

cells, consistent with the randomizing effect of segregation

at cell division.

The genetic ingredients of our system are illustrated in

Figure 1A. An MS2-GFP fusion protein was used to tag tran-

scripts as they were made. The transcript target, produced

from a single-copy F plasmid, consists of the coding region

for a red fluorescence protein, mRFP1, followed by a tandem

array of 96 MS2 binding sites. The two components were

under the control of inducible promoters.

In a typical experiment, production of the fusion tag was

first induced by adding anhydrotetracycline (aTc) to a grow-
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ing culture. In experiments where arabinose was used, it was

also preadded to obtain full induction of the ara system

(Siegele and Hu, 1997). RNA transcripts were then induced

with isopropyl-b-D-thiogalactopyranoside (IPTG), and sam-

ples were taken at different time points and imaged by fluo-

rescence microscopy. Images of typical induced cells are

shown in Figure 1B. Most cells contained green foci, each

consisting of one or more tagged RNA molecules. Cells

also expressed mRFP1. Figure 1C shows typical kinetics

for the green (foci) and red (whole-cell) fluorescence levels,

averaged over the cell population. RNA levels begin rising im-

mediately after IPTG is added and approach a plateau after

about 80 min. Protein levels rise more slowly, as expected:

a stable protein should lag behind the mRNA, just as the

mRNA lagged behind induction. The chromophore must

also mature before fluorescence can be measured, adding

at least a few minutes to the observed protein response

(Campbell et al., 2002).

At very low transcript levels, each mRNA molecule is de-

tectable as a single focus occupied by 50–100 MS2-GFP

molecules (Golding and Cox, 2004), but at higher levels

what appears as a single focus may consist of several tran-

scripts. Our way of estimating the number of mRNA mole-

cules in the cell is to count the total number of bound

MS2-GFP proteins. We therefore measured the total photon

flux of all green foci above the cell background (see Experi-

mental Procedures). This value was then normalized by the

intensity of a single tagged RNA molecule—equal to the first

peak in the intensity histogram (Figure 1D)—to calculate the

number of transcripts per cell. The normalized intensity his-

togram for the number of transcripts per cell consists of a

series of discrete peaks, each corresponding to the integer-

valued number of individual mRNA molecules in the cell.

This result is central to our approach: when estimating an

integer-valued distribution of numbers of molecules using a

continuous quantity like fluorescence, such well-separated

peaks are an indication of the measurement’s fidelity.

RESULTS

Dynamic Range and Accuracy of the Measurements

We have optimized the MS2-GFP induction level to enable ro-

bust mRNA detection and measurement. This means that we

must have sufficient MS2-GFP to saturate all RNA targets,

but not too much MS2-GFP, which would create too high

a fluorescent background level in the cell. We have found

that there exists a large ‘‘dynamic range’’ of MS2-GFP (ob-

tained by inducing the Tet controlled system for 0.5–2 hr at

maximum induction), within which the above conditions are

fulfilled. Based on fluorescence measurements (6 different

experiments, >2700 cells), each cell contains �104 MS2-

GFP molecules (approximately �10 mM) in this induction

range. Of these molecules, typically only 3%–4% are bound

to RNA targets, with a maximum fraction of�10% at the high-

est RNA levels (>10 transcripts per cell). These percentages

are consistent with the fact that the MS2-GFP gene is located

on a ColE1 plasmid, with a copy-number >50 times higher

than the plasmid carrying the RNA-coding target, and ex-

pressed from a stronger promoter (Lutz and Bujard, 1997).
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Figure 1. Measuring mRNA Levels in Living Cells

(A) Genetic components of the detection system. The tagging protein consists of a fused dimer of MS2 coat protein fused to GFP. Protein production is reg-

ulated by the PLtetO promoter (Lutz and Bujard, 1997), and inducible by anhydrotetracycline (aTc). This construct is on a ColE1 plasmid. The RNA target con-

sists of the coding region for mRFP1, a monomeric red fluorescence protein (Campbell et al., 2002), followed by a tandem array of 96 MS2 binding sites. This

message is under the control of a Plac/ara promoter (Lutz and Bujard, 1997), which is repressed by LacI and activated by AraC, therefore inducible by isopro-

pylthio-b-D-galactoside (IPTG) and arabinose. This construct is on an F plasmid, with a single copy per bacterial chromosome. Both plasmids were cotrans-

formed into E. coli DH5a-PRO, a constitutive producer of LacR and TetR repressors. For construction of the components, see Experimental Procedures.

(B) Detection of mRNA and protein in living cells. The picture is a false-colored overlay of the green and red channels. Scale bar, 1 mm.

(C) Kinetics of mRNA (green) and protein (red) levels after addition of IPTG. Cells were grown and induced as described in Experimental Procedures. At dif-

ferent times after induction,�100 cells were imaged. The images were then automatically processed (see Experimental Procedures) to identify individual cells

and within them the location of green particles. The average green signal (CIGD) is the average over all cells at one time point of the total photon flux from all green

foci in the cell, from which the cell background green fluorescence was subtracted. The red signal (CIRD) is the average over all cells at one time point of total cell

red fluorescence. Bars denote standard error of the sample over the population.

(D) Distribution of estimated mRNA copy numbers among different cells in two typical samples. The estimated copy number n is equal to IG normalized by the

intensity of a single tagged mRNA molecule.

(E) Gene expression levels at various levels of induction, obtained by varying the levels of IPTG and arabinose. Green: estimation of mRNA levels (molecules/

cell) at steady state, using our fluorescence-based method. Markers (O, +) are results of two separate experiments (>300 cells in each); lines connect the

averages. Blue: mRNA levels measured by QPCR. Shown are the average and standard error of message levels in two separate experiments. Red: red fluo-

rescence levels of the induced cells in arbitrary units. Data are from the same experiments as the estimated mRNA levels (same markers). Black: luciferase

levels measured from the Plac/ara promoter (in arbitrary units). Data from Lutz and Bujard [1997].
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Because the dissociation constant between MS2 coat pro-

tein and our version of the binding site is in the�nM range (Jo-

hansson et al., 1998), all of the target RNAs are expected to

be saturated by the MS2-GFP pool, i.e., the occupancy of

MS2 binding sites is expected to be close to 100%. In agree-

ment with this view, population measurements show that

cells with above-median RNA levels exhibit only a slightly

lower (5%–10% difference) level of unbound green fluores-

cence compared to cells with below-median RNA levels. At

the single-cell level, the appearance of a new mRNA is usually

not accompanied by a detectable decrease in cell back-

ground fluorescence.

To check that the estimation of mRNA levels is consistent

with other methods, we compared single-cell measure-

ments to three other indicators of gene expression: quantita-

tive real-time PCR (QPCR), levels of the proteins encoded by

the RNA transcripts, and luciferase levels measured from the

same promoter as reported in the literature (Lutz and Bujard,

1997) (Figure 1E). Fluorescence measurements are in good

agreement with the other indicators over most of the induc-

tion range. The agreement with QPCR further strengthens

our belief that absolute levels of message copy number

have been reliably estimated.

In addition to the integer-valued peaks in the photon-flux

histograms and the comparisons with standard measures

of gene activity (QPCR for RNA, fluorescence and luciferase

for protein), a series of additional experimental controls (de-

tailed below) points to the fidelity of our measurements: (1)

the observed statistics of RNA partitioning is approximately

Binomial up to at least n = 15 (see Figure 3D). A similar pro-

tein experiment (Rosenfeld et al., 2005) used such statistics

to estimate protein numbers, even without counting the

number of molecules. (2) The adjustment to steady state fol-

lows a first-order model (Figure 2A). (3) We observe propor-

tionality between RNA and protein levels (Figure 4) over

a broad range of induction. These points are discussed in

more detail in the following sections.

Another possible concern is whether the long array of 96

MS2 binding sites (96 bs) hinders proper transcription and

translation. To examine that, we measured expression levels

(as indicated by red fluorescence of the individual cells) from

two modified constructs, both having the same genetic

background (pTRUEBLUE-BAC2 plasmid with Plac/ara pro-

moter) as our mRFP1 + 96 bs construct: (1) a plasmid carry-

ing the mRFP1 gene only, without the MS2 binding sites

array. In this case, the protein levels obtained are almost in-

distinguishable from those of the original construct: [R]/[R +

96 bs] = 0.82 ± 0.28 (two experiments, 310 cells; where [ ]

denotes mRFP1 fluorescence level). (2) A plasmid in which

the mRFP1 gene is located downstream of the 96bs array,

instead of upstream as in the original construct—in this

case, there is a slight repression of the expression level

(3.0 ± 0.3-fold; 3 experiments, 240 cells). Considering the

length of the transcript on the 50 side of the gene (�4 kb),

this is a small polarity effect (Li and Altman, 2004).

These results are in agreement with additional data point-

ing at the normal behavior of the transcript: (1) we measured

in two different ways the kinetics of mRNA chain elongation

in the GFP-tagged (=MS2 bs array) portion of the transcript.
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This was done by measuring the increase in fluorescent sig-

nal (Figure 3A) and by measuring the physical elongation of

the transcript (Golding and Cox, 2004). Both methods reveal

a very similar chain elongation rate, close to the rates esti-

mated from in vivo population studies (Ryals et al., 1982)

and from in vitro single-molecule studies (Shaevitz et al.,

2003). This result implies that the 96 bs array behaves as

a normal transcript with regards to its transcription kinetics.

(2) As described above, we also examined the ‘‘dose re-

sponse’’ of the two coding regions of our transcript: the

mRFP1 gene (as measured by cell red fluorescence) and

the 96 bs array (as measured by localized green fluores-

cence). As shown in Figure 1E, their behavior is very similar,

again indicating that the 96-mer does not seriously perturb

the dynamics of transcription.

Average Transcriptional Response

Before analyzing statistics in single cells, it is helpful to dem-

onstrate that the average dynamics behave as expected.

Figure 2A shows the average number of transcripts per cell

CnD as a function of the time after induction t. Under full induc-

tion, Cn(t)D starts at CnD << 1 at t = 0 and approaches a steady-

state value of CnDz10 after approximately 100 min. This

level is then maintained for many cell generations. To inter-

pret the average induction curve, we assumed a constant

rate of production k1 and first-order elimination with rate con-

stant k2:

d

dt
CnD = k1 � k2CnD: (1)

Solving Equation 1 yields:

CnðtÞD =
k1

k2

�
1� e�k2 t

�
0

CnðNÞD� CnðtÞD
CnðNÞD� Cnð0ÞD = e�k2 t: (2)

The second formulation in Equation 2 shows that the rel-

ative deviation from steady state decreases exponentially

and independently of k1, i.e., the dynamic response is set

by the elimination rate constant, not by the synthesis rate

constant. Parameter k2 can thus be determined indepen-

dently of k1. Figure 2A compares the experimental response

with the theoretical curve defined by Equation 2, showing

that indeed the data is well characterized by a single expo-

nential approach to steady state. For most mRNAs, elimina-

tion is dominated by degradation (Bernstein et al., 2002),

while elimination through cell growth and division has a mar-

ginal effect. In our system, however, the binding of MS2-

GFP, with a dissociation constant in the�nM range and cor-

responding dissociation times of �hours, (Johansson et al.,

1998), increases the transcript lifetime. When individual

growing cells are followed, the mRNAs are ‘‘diluted away’’

when cells divide (see Figure 3A). In addition, when individual

foci are followed for many generations, they exhibit a slow

decrease in intensity (rate < 1 hr�1), consistent with the mes-

sage slowly being ‘‘chewed up’’ and GFP molecules disso-

ciating. Thus, cell division dominates the negative term in

Equation 1. For consistency, the value of k2 should thus

equal ln(2)/tg, where tg is the cell generation time. Indeed,

the curve describing the approach to the steady state

(Figure 2A, inset) is in good agreement with the value of k2
c.



Figure 2. Induction Kinetics

(A) Estimated average number of transcripts per cell CnD, as a function of time after induction t. Fifty to one hundred cells were imaged at each time point and

the number of tagged mRNAs in each cell was estimated (see Experimental Procedures). CnD is averaged over all cells at a given time. Symbols (+, o, D) are

results of three different experiments. Dashed line (cyan) is the prediction of the first order model (Equation 2), with parameters k1 = 0.14 min�1, k2 = ln(2)/50

min�1. Solid line (cyan) consists of the two asymptotes of the theoretical expression n(t) = k1 t (short times) and n(t) = k1/k2 (long times). Dotted blue line—the

results of a stochastic simulation of the bursting message model (see text). Inset: relative deviation from steady state, as a function of time after induction.

Symbols are experimental data. Line (cyan) is the prediction of the first order model (Equation 2).

(B) Fraction of cells having no tagged RNA (P0) as a function of time after induction t. Data (+, o, D) are from the experiments in (A). Also shown (cyan, dashed

line) is the theoretical prediction of the first-order transcription model P0(t) = e�k1t (Equation 3), with the same parameters used in (A). The actual decline is

about four times slower, with a rate of approximately 0.032 min�1 (cyan, solid line). Blue: a stochastic simulation of the bursting mRNA model (see text).

(C) Histograms of mRNA copy numbers in the cell at various times after induction. Data is from one of the experiments in (A). Starting from an almost uniform

population, with most cells having no messages at t = 0, the average copy number increases with time, as does the width of the distribution. Top inset:

histogram resulting from simulation of the mRNA bursting model (see text). Bottom inset: histogram of mRNA copy numbers at t = 30 min after induction.

In this experiment, cells were not preinduced with arabinose. Instead, 0.1% arabinose was added together with IPTG at t = 0. This induction procedure leads

to a strong bimodal distribution of mRNA in the population, due to the autoregulatory nature of the ara system (Siegele and Hu, 1997).

(D) Variance (s2) versus average (CnD) of mRNA copy number. The data (+) are from four different experiments, each at multiple induction levels. Dashed line

(cyan) is the theoretical prediction based on a Poisson model, with s2 = CnD. Solid line (cyan) is a least-mean-square fit of the data to a first-order polynomial.

This fit yields a slope of 1.0 (in log-log), implying proportionality of s2 to CnD. The average of s2/CnD is 4.1. Also shown (blue spots and least-mean-square fit) are

the results of the mRNA-bursting simulation (see text) run at various bursting rates (the parameter k1, corresponding to the experimental induction levels),

using the same average burst of 4.
expected from our independently measured generation time:

tg z 50 min, k2 (measured) = 0.014 ± 0.002 min�1. We note

that the stability of the transcript is highly advantageous for

our purposes and allows us to study the randomness of tran-

scription without convolving the results with the randomness

of RNA degradation.

Once the value of k2 has been determined, a value of k1 =

0.14 ± 0.02 min�1 follows immediately from the level of the

steady state, Cn(N)D = k1/k2. To check that the same value

of k1 accounts for the entire postinduction period and not
Cell
just the steady state, we independently determined its value

from the initial time points where Equations 1 and 2 simplify

to dCnD/dt z k1 and Cn(t)D z k1t, that is, where so few tran-

scripts have accumulated that elimination can be ignored.

This produced a consistent value of k1 z 0.10 ± 0.02 min�1.

Single-Cell Transcriptional Response—Testing

the Poisson Hypothesis

The simplest microscopic mechanism that produces a con-

stant average rate of synthesis is the Poisson process, with
123, 1025–1036, December 16, 2005 ª2005 Elsevier Inc. 1029



Figure 3. Induction Kinetics in Individual Cells

(A) Estimated number of transcripts per cell n, as a function of time t, in typical cells. Cells were grown and induced for MS2-GFP, and at time t = 0 a few ml of

cell culture was placed under a thin LB-agarose slab with IPTG (1 mM) and aTc (100 ng/ml). Fluorescent images were taken for 2 hr, at 2 frames/min. Red

dots, raw data. Green line, data smoothed by taking the maximum value in a six-sample running window. Black lines are fit by eye to a piecewise linear

function. This fit describes periods of transcriptional inactivity (constant n), separated by transcriptional events, in which RNA is produced at a rate of 1

transcript per 2.5 min. This rate corresponds to a chain elongation rate of�25 nucleotides/sec, in close agreement with our earlier measurements (Golding

and Cox, 2004), as well as with the known rate of chain elongation in E. coli at 22ºC (Mathews et al., 2000; Ryals et al., 1982). Cyan spots are measurements

made in the sister cell after cell division, demonstrating the randomness of RNA partitioning (D). Also marked in the figures are the measured jumps Dn in

RNA level following transcription, as well as negative changes in n following cell division.

(B) Distribution of inactivity periods (DtOFF, squares) and activity periods (DtON, triangles). Data is from 20 cells and 77 transcription events. Line is a fit to an

exponential distribution. Mean DtOFF is z37 min; mean DtON is z 6 min. Note that DtON is equal to Dn times the duration of transcribing 1 message, 2.5

min—see below.

(C) Distribution of RNA ‘‘jumps’’ (Dn). Squares are data, cyan line is a fit to an exponential distribution. Same data set as (B). The mean Dn is z 2.2.
1030 Cell 123, 1025–1036, December 16, 2005 ª2005 Elsevier Inc.



constant probability per unit time of making a transcript. The

probability for zero events then decreases exponentially with

time, with the same rate constant that governs the average

synthesis. If transcription truly were Poissonian, the fraction

of cells where zero transcription events have occurred at

time t after induction, P0(t), should follow:

P0ðtÞ = e�k1 t: (3)

Because we showed above that k1 [ k2, the effect of

transcript elimination can initially be ignored. At short times

t after induction, P0(t) can thus be estimated from the fraction

of cells that contain zero transcripts. Figure 2B is the exper-

imental estimate of P0(t) compared to the theoretical predic-

tion, using the value of k1 that was determined from the av-

erage dynamics above. This shows that P0(t) indeed

decreases exponentially, at least up to t � tg where the

test is expected to break down. However, the exponential

decay rate is 0.032 ± 0.005 min�1, which is about four times

(4.4 ± 1.4) smaller than the estimated value of k1 above. The

underlying stochastic process is therefore not Poissonian,

despite the fact that the first event occurs after an exponen-

tially distributed lag.

By counting the number of molecules per cell, the cell-to-

cell heterogeneity in transcript levels can also be tested

against the Poisson hypothesis that the variance equals

the average (van Kampen, 1992), s2 = CnD. Here, the cells

grow and divide, and individual cells are sampled from an

asynchronous population. Both complications can easily

be built into the model, but to minimize complexity and re-

duce the number of parameters we instead normalized the

measured numbers by the individual cell sizes (Elowitz

et al., 2002). The observed variance was then compared to

model predictions assuming that elimination at cell division

can be approximated by first-order exponential deaths

(Thattai and van Oudenaarden, 2001), producing s2 z CnD

if the synthesis is truly Poissonian. Figure 2C is a histogram

of measured mRNA numbers at various times after induc-

tion, and Figure 2D shows the variance at steady-state as

a function of the average at different levels of induction.

Over a 100-fold range, the variance is almost perfectly pro-

portional to the average, as expected from a Poisson distri-

bution. But the proportionality constant is again four times

higher than expected (s2 /CnD = 4.1 ± 0.5).

The linear-average dynamics with constant parameters,

the exponentially distributed waiting times, and the propor-

tionality between the variance and the average, are precisely

the behaviors expected of Poisson processes and Poisson

distributions. But by counting the individual molecules, we

see that the actual numbers are off by a factor �4 from the

Poisson expectation. To address this issue, we now suggest

a modified Poisson process, test its assumptions indepen-

dently, and show that it indeed generates the statistics ob-

served above.
Cell
Bursts of Transcription

To explain the observed heterogeneity, we return to previous

models of random gene activation-inactivation (Kepler and

Elston, 2001; Peccoud and Ycart, 1995; Raser and

O’Shea, 2004; Sasai and Wolynes, 2003). The most com-

mon kinetic assumptions are that genes in the OFF state

switch ON with a constant probability, and that genes in

the ON state either switch OFF or make a transcript with con-

stant probability. In mathematical terms, activity is assumed

to switch at exponentially distributed intervals, as in a ‘‘ran-

dom telegraph process’’ (Gardiner, 2004), and transcription

is assumed to be Poissonian when the genes are ON. The

number of transcripts made in the ON periods will then

vary randomly. The combined effect of the two sources of

randomness—the exponential duration and the Poissonian

synthesis—is that a geometrically distributed number of mol-

ecules are transcribed in each ON period (Berg, 1978). The

geometric distribution is essentially an integer-valued version

of the exponential distribution and describes the number of

heads before the first tail when tossing an unfair coin. In

the present case, it can be calculated by convoluting the

Poisson process over exponentially distributed times or sim-

ply by recognizing that the cell effectively tosses a coin to de-

cide whether to make another transcript (tails) or turn OFF

the gene (heads). With a single copy of the gene, a random

period of inactivity (OFF) is thus followed by a random period

of activity (ON). If long OFF periods are followed by intense

ON periods that produce a significant number of transcripts,

transcription is said to occur in ‘‘bursts.’’

To directly demonstrate the bursts and to measure the rel-

evant physiological parameters, we followed transcription of

individual messages over time and calculated the statistics of

bursts and switch-time intervals. Exponentially growing cells

expressing MS2-GFP were placed between a coverslip and

a thin nutrient agarose slab containing the required inducers

(IPTG and aTc) at 22ºC where they grew and divided nor-

mally (see Experimental Procedures). We then followed

RNA levels in individual cells as they increased during the

cell cycle and abruptly dropped at cell division (Figure 3A).

The cells exhibited a discrete distribution of measured RNA

levels (see lower histogram in Figure 1D), corresponding

to mRNA copy number. No increase in RNA levels was

detected when cells were grown without IPTG (data not

shown). Under these conditions, we were also able to

show that the rate of decrease in the intensity of individual

foci was very low (<1 hr�1), in accord with our previous ob-

servation that the tagged transcripts are stable.

Figure 3A shows that transcription is characterized by pe-

riods of inactivity DtOFF, followed by periods of activity DtON,

each producing a random jump of size Dn in the RNA level.

Figure 3B shows that the distribution of both DtON and DtOFF

are accurately described by exponentials, as expected from

the simplest models. The averages are CDtONDz6 min and
(D) Statistics of RNA partitioning at cell division. Shown is the difference in RNA molecule number inherited by the two daughter cells DN versus the number

of molecules in the mother cell N. Spots are data from 54 cell divisions. Circles are binned data and bars denote standard error. The blue solid line describes

the binomial expectation CDND z ON. The dotted line is the limiting case where all RNA molecules end up in one daughter cell (CDND = N). At the other ex-

treme of perfect partitioning, CDND = 0. The data appears to be close to the binomial expectation.
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CDtOFFD z 37 min (20 cells, >77 transcription events), so

transcription indeed seems to occur in intense periods, as

can also be seen directly in the time series (Figure 3A).

Figure 3C shows the distribution of Dn from the same data

set, again very well approximated by the predicted geomet-

ric or exponential behavior. The statistics are consistent with

a bursting model where Dn > 1 is the most likely event.

Because effective ON periods are relatively short, the ON-

OFF switching and subsequent transcription can be con-

densed approximately into a Poisson process where each

event adds a geometrically distributed number of molecules,

i.e., quantal burst of mRNA appearance. This can then be

used to further simplify the mathematical models and explain

our previous findings. First, the rate constant for the de-

crease of P0(t) in Equation 3 is simply k0
1 = k1CDnD

�1
, i.e.,

the observed exponential decrease is expected but with

a CDnD-times lower rate compared to the Poisson case. Sec-

ond, the variance follows s2=CnD = CDnD(using the formal

analysis in Thattai and van Oudenaarden [2001]). Thus, the

observed proportionality to the average is expected, but

with a CDnD-times higher proportionality constant. The ob-

served bursting thus not only explains both results, it also ex-

plains why both variables differ from the Poissonian expecta-

tion by the same factor. The 4-fold effect observed in the

37ºC statistics experiments (Figure 2) is not identical to the

2-3-fold effect predicted from the burst measurements that

were run at 22ºC (Figure 3) (due to microscopy conditions).

But the numbers are close and, more importantly, the experi-

ments confirm the shape of the distributions—that is to say,

the types of stochastic assumptions we have made.

From the measurements above, we can also estimate the

randomness of RNA partitioning at cell division—how many

RNA molecules end up in each of the daughter cells? Most

theoretical models have assumed that the RNA molecules

segregate independently to identical daughters. On this hy-

pothesis, RNA partitioning will exhibit binomial statistics,

characterized by the relation CDND z ON, where CDND is

the average difference in molecule numbers inherited by

the two daughter cells and N is the number of molecules

in the mother cell. For example, if the mother has ten copies

(N = 10) and the two daughters receive three and seven

each, then DN = 7 � 3 = 4. As can be seen in Figure 3D,

the data strongly suggest that partition fits the binomial ex-

pectation.

To illustrate how these characteristic dynamics can be ob-

tained in growing and dividing cells, we devised a computer

simulation for a population of 500 cells. The only assumptions

were that each cell has a constant probability per unit time of

generating a geometrically distributed burst of transcripts

(Dn = 4), that cells grow from normalized size 1 to 2 in one

generation (50 min) and then divide, and that transcripts

segregate independently to the two identical daughter cells

(binomial partitioning). Simulated data using the Gillespie

algorithm (Gillespie, 1977) was collected for 150 min, corre-

sponding to three cell generations. The numerical model re-

produces all the analytically expected and experimentally

observed main features noted above, including the shape of

the copy-number histogram. This is summarized in Figures

2A–2D.
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Correlating mRNA and Protein Levels

The protein product of our tagged mRNA is a red fluorescent

protein, mRFP1. For the average levels in our Plac/ara system,

we find that the steady-state protein level is directly propor-

tional to the mRNA level (see Figure 4). This proportionality is

commonly assumed but is not self-evident because it implies

that transcription and translation are decoupled (Gowri-

shankar and Harinarayanan, 2004). Numerous nonlinear

couplings could be imagined, such as nonsense polarity

(Yanofsky and Ito, 1966) and saturating ribosomes or

RNases at high mRNA levels.

By measuring the levels in individual cells, we can also ex-

amine correlations between the two components. One strik-

ing observation is that the correlation between mRNA and

protein is much weaker in more recently divided cells. Group-

ing the cells into larger-than-medianand smaller-than-median

sizes, the mRNA-protein correlation coefficient for the large

cells was 0.23 ± 0.05, compared with a vanishingly small value

(<0.04) for the small cells (data from four experiments, >600

cells). We believe that this is due to the randomizing effect of

cell division: because the cells just prior to division have rela-

tively large numbers of proteins, each daughter receives close

to 50% of the total at cell division. But the number of tran-

scripts is so low that random segregation will introduce large

relative differences between the two cells, as explicitly demon-

strated in Figure 3D. A strong correlation at the end of the cell

cycle—when the transcriptshave been producingproteins for

Figure 4. Quantifying Translation

Average green fluorescence levels of mRNA foci (IG) versus red fluores-

cence levels (IR) in three typical experiments. Cells were induced at a range

of induction levels (0–1 mM IPTG, 0%–0.1% arabinose). The cultures were

maintained in exponential growth for 5 hr by constant dilution into fresh

medium. Different markers (+, o, D) denote different experiments. Bars

are standard errors of the average. Dotted lines are least-mean-square lin-

ear fits. The normalized correlation coefficients for IG and IR (log scale) in

these experiments are in the range 0.85–0.98, and the least-mean-square

fitted slope for log10(IR) versus log10(IG) is 1.0 ± 0.17. In RNA constructs

containing the MS2 binding sites but no mRFP1 gene, no red fluorescence

was detected above background (data not shown). Two hundred to five

hundred cells were imaged and analyzed in each experiment.
Inc.



some time—is then effectively forgotten. This effect should be

stronger for mRNAs at lower numbers or with longer lifetimes

and can be further pronounced if individual transcripts tend to

cosegregate due to cell-localization effects.

Incorporating protein production as a Poisson process

and partition with binomial statistics into our RNA bursting

simulation produces the same overall result: older cells ex-

hibit a stronger protein/RNA correlation than younger ones.

Only a qualitative fit can be expected without making exact

assumptions about chromosome replication, the random-

ness of cell division times, and other sources of protein ran-

domness, the details of which are unknown in our system.

Finally, we can obtain an estimate for the average number

of mRFP1 proteins produced by each mRNA molecule in

a cell lifetime. For this purpose, we estimate p = Cm/nD, where

m and n are the numbers of protein and mRNA molecules

per cell in a population that has reached steady state. In or-

der to obtain p, we write (for each cell):

IG = nNfGFP;

IR = mfRFP:

These equations describe the fact that the measured in-

tensity of green fluorescent particles in the cell (IG) is the re-

sult of the number of RNA molecules (n), each tagged with N

GFP molecules (N� 50–100), where a single GFP has a pho-

ton flux fGFP. Similarly, red fluorescence (IR) is proportional to

the number of mRFP1 proteins in the cell (m), with the pro-

portionality coefficient determined by the flux of each one,

fRFP. From the experiments described in the text (and see

Figure 4), we obtain CIR /IGD = 3.1 ± 0.2.

To estimate the flux ratio fRFP/fGFP, which is a function of the

molecules themselves, as well as of our optical system, we

used a pair of constructs which differ only in their fluorescent

protein. The constructs are a fusion protein of MS2 with either

GFP or mRFP1 under control of the PLtetO promoter in a

ColE1 plasmid. Two sets of measurements were performed:

the first by inducing the fusion protein alone and measuring

the fluorescence levels in the cells and the second by induc-

ing the fusion protein in the presence of the target mRNA and

measuring the fluorescent intensity of the tagged transcripts

(either green or red). These measurements yielded fRFP/fGFP =

3 ± 1. Using these values, we obtain

CpD = Cm=nD = N* ðfGFP=fRFPÞ* ðCIR=IGDÞz60--110:

This value compares well with the estimate made in Ken-

nell and Riezman (1977) for the lac operon (about 5–40), tak-

ing into account the longer lifetime of our tagged RNA. The

estimated number of mRFP1 proteins in a fully induced state

(m � 1000) also agrees with the original estimates for this

promoter, based on measured luciferase activity (Lutz and

Bujard, 1997).

DISCUSSION

Gene expression is directly involved in almost every life pro-

cess, but surprisingly little is known about the kinetic mecha-

nisms in the individual cells where they operate. Large cellular
Cell
fluctuations have been predicted (Delbruck, 1940; Schro-

dinger, 1944) and observed (Benzer, 1953; Novick and Wei-

ner, 1957) for half a century, yet single-cell analyses are still

severely restricted by the available methods. For example,

even though most studies of stochastic cell processes have

emphasized that protein fluctuations are caused by fluctua-

tions in the corresponding mRNAs, all measurements have

been done on protein levels. With one recent exception

(Rosenfeld et al., 2005), they have also been constrained to

snapshots across populations rather than time series in indi-

vidual cells. Finally, because total GFP fluorescence is only

approximately proportional to the number of GFP molecules,

very far from single-molecule resolution, it has been difficult to

compare critically the data to probabilistic models where ab-

solute numbers determine relative fluctuations. These diffi-

culties have been partially overcome by an array of creative

approaches (Blake et al., 2003; Elowitz et al., 2002; Ozbudak

et al., 2002; Raser and O’Shea, 2004; Rosenfeld et al., 2005;

Thattai and van Oudenaarden, 2001) and have then been

used to address various biological questions.

In the current work, we used in vivo tagging of mRNA to

monitor transcript numbers in living E. coli cells, with single-

molecule resolution. After demonstrating the fidelity and

dynamic range of our method, we used it to characterize

transcription kinetics in individual cells. We found that tran-

scription occurs in quantal bursts, even in fully induced cells;

that the burst sizes are geometrically distributed; and that the

time intervals between bursts are exponentially distributed.

All these features are expected from a simple gene activa-

tion/inactivation model. The bursting behavior observed in

single-cell induction kinetics also explains several different

statistical properties of the population data.

To show bursts in transcription, three separate methods

were used. We note that although our mRNA-counting

method has proven reliable over a large range of levels, none

of the main results of this study actually rely on accuracy at

high numbers. The distributions for waiting times and numbers

of molecules both scaled as if transcription were Poissonian,

but with a 4-fold deviation in the proportionality constant in

bothcases—a number that is large compared to the estimated

experimental error. These experiments were done at low tran-

script averages where the method is most reliable: The first-

event measurement separates zero from one copy, and the

distribution experiment was done from 0.08–8 copies on aver-

age. The third method used time series. The single-cell data

shown in Figure 3 reveal many clear burst events followed by

longer periods of no transcription. Importantly, the estimated

distributions for the burstsand the waiting time between bursts

are the exponential (or geometric) shapes expected from

theory. This observation is not necessary to make our claim,

but it does lend further credence to the on-off model.

Origins of RNA Bursting

Chromatin remodeling has been suggested to cause tran-

scription bursts in eukaryotic studies (Kaern et al., 2005). In

both pro- and eukaryotes, the same pulsatile effect might

also result from other mechanisms: activators (in our case

AraC) or repressors (in our case LacI) binding and falling off

their binding sites, DNA undergoing conformational changes
123, 1025–1036, December 16, 2005 ª2005 Elsevier Inc. 1033



such that the polymerase has access for brief periods only

(Guptasarma, 1995; Guptasarma, 1996), or transcription re-

initiation due to retention of sigma factor during the elonga-

tion process (Bar-Nahum and Nudler, 2001; Dieci and Sen-

tenac, 2003). In relation to this last possibility, it is interesting

to note that in our single-cell time series data (Figure 3A), the

duration of a transcription event seems to be proportional to

the number of transcripts made during that period, possibly

implying that transcripts are made consecutively (one at

a time), rather than in parallel. We also point to the possible

relation between our findings and the rarely referred-to re-

sults of Baker and Yanofsky (1968), Imamoto (1968), and

Contesse (Beckwith et al., 1970; Contesse et al., 1969) de-

scribing periodic transcription initiation in the lac and trp op-

erons. Bursting could in principle also arise during chain

elongation, for example due to pausing of RNA polymerase

during transcription (Artsimovitch and Landick, 2000; Shun-

drovsky et al., 2004) and the subsequent queuing of adja-

cent enzymes transcribing the same template (Bremer and

Ehrenberg, 1995; Epshtein and Nudler, 2003; Foe, 1978).

One may ask to what degree our results are general and to

what degree they depend on the specific details of promoter

and transcript used in this work. We chose the synthetic

Plac/ara promoter because it is so well characterized and

because it has the same logical structure as the lac pro-

moter, with the hybrid workings of an activator and a repres-

sor. As in many previous single-cell studies, we thus follow in

the recent tradition of synthetic biology to facilitate the study

of a particular process—in this case transcription—by mini-

mizing effects of other cellular control circuits. To generalize

the results, we constructed a reporter system for a second

promoter, the PRM promoter of bacteriophage l. Despite

the very different regulatory characteristics of this promoter,

it too exhibits transcriptional bursting with a similar mean burst

size (see Supplementary Data available with this article online).

As for the unique transcript used in our work, the length of

our transcript (�4.5 kb) is of the order of typical polycistronic

operons (e.g., lac and trp) prevalent in the bacterial genome

(Neidhardt, 1996). We cannot rule out the possibility that

the transcript length or the multiple MS2 recognition sites am-

plify the pausing effect relative to an indigenous transcript by

affecting RNA polymerase processivity. We note, however,

that hairpin formation by itself is not sufficient to signal a pause

in elongation (Uptain et al., 1997). As described above, mul-

tiple measurements strongly suggest that transcription in our

system behaves normally and hence that our observations

are intrinsic to transcription. Moreover, because we see the

same general features with a 48 binding site array (in the

case of the l PRM reporter), we can have additional confi-

dence in our central conclusions.

Additional discussion is included in the Supplemental

Data: Comparison with Previous Models and Experiments;

Intrinsic and Extrinsic Noise.

EXPERIMENTAL PROCEDURES

Genetic Constructs

For the construction of the MS2-GFP fusion and the 96 binding site array,

see (Golding and Cox, 2004).
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Construction of the RNA Target

A promoter-less version of pTRUEBLUE-BAC2 (Genomics One Interna-

tional, Buffalo, NY) was created by amplifying the plasmid sequence mi-

nus the original Plac region, with primers containing an AatII restriction site.

The PCR product was then digested with AatII, religated, and cloned into

E. coli strain DH5a-PRO. Promoter Plac/ara was cut from vector pZS*24

(Lutz and Bujard, 1997) at the AatII and EcoRI sites, and inserted between

the AatII and MfeI sites of the promoter-less BAC vector. The 96 binding

site array was inserted between the ClaI and MluI sites. The coding region

for mRFP1 (including ribosome binding site and stop codon) was ampli-

fied from pRSET-B (Campbell et al., 2002) and inserted into the BAC2

ClaI site. The resulting vector is an F-based plasmid, with a Plac/ara pro-

moter controlling the production of a message containing mRFP1 up-

stream of the 96 MS2 binding site array. To create a construct with the

reverse order of coding region and binding sites array, mRFP1 was ampli-

fied and inserted into the MluI site.

Construction of the PRM Reporter

The immunity region (position 35.4–38.4 kb [Hendrix, 1983]) of wild-type

bacteriophage lambda (lPAPA, gift of R. Weisberg) was amplified with pri-

mers containing BamHI and MluI sites and inserted into the promoter-less

BAC vector. The resulting plasmid, minus the rexAB region, was amplified

with primers containing NheI and BstBI sites. A 48 binding site array pre-

viously cloned into a pBLUESCRIPT plasmid (Golding and Cox, 2004)

was excised using ClaI and XbaI. The plasmid and insert were ligated

and cloned to yield a BAC vector carrying limm(rexAB::bs48).

Bacterial Growth and Induction

Cells were grown in LB (Miller, 1992), supplemented by antibiotics ac-

cording to the specific plasmids markers. For induction of protein and

RNA, cells were grown overnight from a single colony, diluted 1:1000

into fresh medium, and grown with aeration at 37 ºC. To induce the pro-

duction of the MS2-GFP tag, 100 ng/ml aTc was added. After �45 min,

a sufficient amount of protein is present for RNA detection. Detection is

not sensitive to the exact induction level (see text). RNA target production

was induced by various levels of arabinose (0%–0.1%) and IPTG (0–

1 mM). Unless stated otherwise, cells were preincubated with arabinose

to obtain full activation of the ara system before derepression of the lac

component. Message levels were then tracked starting a few minutes

after induction and up to many hours afterwards. To maintain exponential

growth, cells were diluted into fresh prewarmed medium whenever the

optical density approached OD600 �0.5.

Microscopy and Image Analysis

At each time point, a few ml of culture was placed between a coverslip and

a thin slab of 0.8% agarose containing LB. Microscopy was performed

with a Nikon Eclipse (TE-2000-U, Nikon, Tokyo, Japan) inverted micro-

scope equipped with a 100� (1.3 NA) objective and epifuorescence sys-

tem. Filter sets used were B-2E/C (FITC) for GFP detection, and Y-2E/C

(Texas Red) for mRFP1 detection. Images were taken with a Roper Cas-

cade 512B camera (Photometrics, Tuscon, AZ) after an additional 4�
magnification. Images were acquired using MetaView software (Universal

Imaging, Downingtown, PA). Image processing used to recognize cells

and fluorescent foci and measure fluorescence intensity was performed

using the Image Processing Toolbox of MATLAB (The Mathworks, Natick,

MA). Fluorescent images obtained through each filter were read into

MATLAB in TIFF format and processed as follows (the source code is

available upon request): a morphological opening operation (erosion fol-

lowed by dilation) was performed to estimate the background level. The

background image was then subtracted from the original image and

the contrast adjusted. A binary version of the image was created by using

automatic thresholding. This binary image was used to recognize individ-

ual bacteria in the picture. Falsely recognized objects were discarded

based on criteria of size, axial ratio, and solidity. To identify fluorescent

foci, a similar procedure was repeated within each bacterial cell, again us-

ing additional morphological parameters to decrease the number of false

recognitions. Once the objects (cells and foci) were determined, mea-

surements of green fluorescent levels of the cells and foci were performed
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on the original unprocessed TIFF image. For measurement of protein lev-

els (red fluorescence), only the cell-recognition procedure was used.

To obtain the values of green foci intensity (IG) and red cell intensity (IR),

IR was obtained by integrating the total fluorescence (photon flux per sec-

ond) of the cell (red channel) and subtracting the background level in the

same image. IG was obtained by integrating the total fluorescence of foci

in the cell (green channel) and subtracting the background (green) level in

the same cell. The number of tagged transcripts in the cell was estimated

by dividing IG by the intensity of the first peak in the IG histogram (see e.g.,

Figure 1D). At very low induction levels, only a single peak is detected,

which corresponds to the intensity of a single tagged message (Golding

and Cox, 2004).

Induction under the Microscope

Cell growth and induction of MS2-GFP was as described above. For ob-

servation of RNA induction, a few ml of culture was placed between a cov-

erslip and a 1 mm thick slab of 1% agarose containing LB that had been

preincubated overnight with IPTG (1 mM) and aTc (100 ng/ml). A series of

fluorescent images was taken at 30 s intervals for at least 2 hr.

Stochastic Model for Transcription

The following model was implemented in MATLAB. A population of 500

cells, with a random distribution of cell ages, all with zero mRNA mole-

cules, was ‘‘induced’’ at time t = 0 into a state where each cell had con-

stant probability per unit time (k1) of making a ‘‘burst’’ of transcripts. Each

burst was exponentially distributed, with an average value b. Simulated

data were collected from t = 0 to t = 150 min. During this time, cells di-

vided, with generation time tg = 50 min. At each cell division, the existing

mRNA molecules were split between the daughter cells, with a binomial

distribution for the copy number received by each cell. Protein production

was modeled as a Poisson process, where each existing transcript can

be translated into a protein with constant probability per unit time, and

protein partition was modeled with binomial statistics. The rate of transla-

tion was chosen so as to reproduce the measured mRFP1 level in the cell.

Estimation of Transcript Numbers by QPCR

Cells were grown and induced as described above. Total RNA was iso-

lated using an RNeasy kit (QIAGEN, Valencia, CA) according to the man-

ufacturer’s instructions. Primers for mRFP1 and for ribosomal 16S RNA

were designed using Applied Biosystems Primer Express 2.0 software

(Applied Biosystems, Foster City, CA) to yield amplicons of approximate

length 100 bp. Reverse transcription was performed using the Super-

script II Reverse Transcription kit (Invitrogen, Carlsbad, CA) and these pri-

mers. Regular PCR reactions were then performed to verify that proper

cDNA products were created. Real-time PCR reactions were performed

using SYBR Green Master Mix (Applied Biosystems) in an ABI Prism 6700

(Applied Biosystems). A standard curve was created by measuring the

threshold-crossing cycle number (Ct) for a series of known dilutions of

the different primers to verify that amplification efficiency was compara-

ble. The standard curve for 16S rRNA was used to estimate the relative

number of mRFP1 transcripts under different induction conditions. To

translate these relative values into absolute copy numbers per cell, a value

of 20,000 16S RNA molecules per cell was used (Neidhardt et al., 1990).

Supplemental Data

Supplemental Data include supplemental text and can be found with this

article online at http://www.cell.com/cgi/content/full/123/6/1025/DC1/.
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