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1. Introduction and Questions 

The basic laws of evolution have been known for more than a century: herita- 
ble variation (Mendel), selection (Darwin's survival of the fittest) and random 
mutations and sexual recombination to produce the variation. The genome of 
an organism stores the primary information, but selection acts on the phenome: 
the collection of its properties, behavior, etc. With these laws, there is no basic 
puzzle: given enough time anything can evolve. Even a cell could arise spon- 
taneously from an extremely rare fluctuation. But somewhere between such ab- 
surdly improbable events and small, fast, evolutionary changes in microbes that 
can be directly observed, are evolutionary processes that can occur on a broad 
spectrum of time scales: from days in the laboratory to billions of years. 

The fossil record and the diversity of existing species illustrates the type of 
phenomes that can evolve on million and billion year time scales, and recent 
sequencing data provides the associated genomes. The understanding of phy- 
logeny w how organisms are related to and descended from others - -  is impres- 
sive. Yet the understanding of the dynamics of evolution, and even what sets the 
time scales is very poor. Indeed, one could make a good case that the most funda- 
mental puzzles about evolution are the quantitative ones, most basically: How is 
evolution of complex functions, body plans, etc. so fast? Of course, this depends 
on what one means by "fast": Compared to what expectations? 

These lectures start with general questions to motivate and set the stage. The 
focus then shifts to analysis of some of the simplest aspects of evolutionary dy- 
namics before coming back to broader issues at the end. 

1.1. Difficulties 

A classic problem, going back to Darwin, is the evolution of an eye. The general 
view among biologists emphasizes the long times involved. This is expressed 
quantitatively by Richard Dawkins, one of the great expositors of evolution, who 
says that an eye could not evolve in a thousand generations, maybe not in a mil- 
lion generations, but clearly could evolve in a billion generations. But where do 
these numbers come from? The time scales are known from the fossil record, 
but understanding the ages of fossils comes solely from geology, radiochemistry 
and physics. Thus Dawkins' and other such statements rely on knowing the an- 
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400 D.S. Fisher 

swer: there is no understanding from biology or evolutionary theory of the time 
scales. Recently, there has become available a crude measure of the time scales 
from biology: information from rates of neutral mutations ~ ones that do not 
change proteins - provides estimates of time scales for evolutionary history con- 
sistent to within an order of magnitude or better with dating of fossils. But such 
neutral changes, ipso facto, are not evolutionary, thus again they only provide a 
clock. 

A way I like to phrase the primary question to evolutionary biologists is to 
ask what their reaction would be if they learned that the physical scientists had 
messed up and really life was 101°° years old instead of about 101° years, or, 

for that matter, 101°1° years. Would they expect that there would have been much 
greater diversification? Or evolution of completely new abilities of cells or whole 
organisms? Some have honestly said that they would not know how to react: 
the lack of understanding of such quantitative issues is poor enough that they 
would not have even rough expectations. Indeed, it is not even clear that the total 
time available m although this is what tends to get emphasized is the most 
important quantity. Since the number of evolutionary "experiments" is roughly 
proportional to the total number of organisms that have ever lived, perhaps this is 
a better parameter. So if life on earth was a thousand times younger, but the earth 
a thousand times larger would as complex and diverse organisms have evolved? 
Or, conversely, if it were a thousand times older but a thousand times smaller 
(with a similar diversity of environments)? To avoid the issue of things that 
may have only happened once (for which talking about probabilities is seriously 
problematic), one can best ask these questions about the time since the first cells. 
Or, at a later stage, since the origins of multicellular life. 

Quantitative questions about evolution on geological time scales are surely 
very hard to answer. But one can ask similar questions on much shorter time 
scales and for more modest evolutionary changes. Crudely, what combinations 
of parameters and other features m determine what types of evolutionary 
processes can occur? This, of course, depends both on the biology of the or- 
ganisms as they exist now, and on the evolutionary history which gave rise to 
them. 

Theodosius Dobzhansky's famous dictum is that "nothing in biology makes 
sense except in the light of evolution". In contrast to physics, in biology a sim- 
pler explanation is no more likely to be f i g h t -  unless it is simpler in evolu- 
tionary rather than functional terms. Thus evolution is the only Ockham's razor 
in biology - -  but it is hardly ever used quantitatively. The difficulty of the field 
and its state of development account for this. Most evolutionary theory ~ in- 
cluding quantitative modeling ~ deals with phenomes. Yet these are controlled 
by genomes which are completely different beasts. And the mapping between 
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genomes and phenomes is extremely complicated containing all the richness 
of biology and ecology. Population genetics focuses on genomic changes, but 
mostly either specific small changes or statistical analyses of widespread nearly- 
neutral variation with information on the phenotypic effects lost. 

It is often said that genomic sequence data is "like reading the lab notebooks 
of nature". But this is an extremely misleading analogy. By the time species (or 
even clearly unidentifiable strains) have diverged, the number of genetic differ- 
ences is so large that one cannot extract the significant changes, nor whether these 
arose as a long series of small phenotypic changes or by a few drastic changes via 
"hopeful monsters". Thus a much better analogy is that genomes are like indexes 
of successful t e x t b o o k s -  indiscriminate indexes that randomly mix useful and 
useless entries with hints of the original evolutionary "ideas" very hard to 
extract. 

The focus on phenomic evolution can give rise to major misconceptions. Of- 
ten the genetic bases of phenotypic changes are only considered implicitly: as 
giving rise to the variability of phenotypic traits on which selection can act. 
A striking example is a recent estimate of the time to evolve a vertebrate eye. [ 1,2] 
This "pessimistic-at-every-step" estimate of a few hundred thousand generations 
sounds encouraging, but it has a fatal flaw: nowhere does the population size or 
the mutation rate, or indeed, the genome at all, enter the analysis. All that is 
considered is selection on assumed phenotypic variation, and this is assumed to 
be sufficient for changes in quantitative traits equivalent to hundreds of standard 
deviations. Yet this calculation is cited by Richard Dawkins as "stilling Dar- 
win's shudder"! [3] I, for one, find this highly disturbing, especially as it comes 
together with the dismissal of questions about the lack of quantitative understand- 
ing of evolution as an "argument from personal incredulity". 

1.2. Prospects 

Thanks to the enormous advances in molecular and cell biology, the ability to 
observe and manipulate - -  genetically, chemically, and physically m organisms 
in the laboratory, and the explosion of DNA sequencing technology, we are pre- 
sented for the first time with the opportunity to greatly expand our understanding 
of the dynamics of evolution. The goal is to take it from a largely-historical 
field m which some argue it is intrinsically [4] - -  to a more fully developed field 
of science. 

1.2.1. Experiments 
In order to make progress, a broad spectrum of laboratory experiments are cru- 
cial: this necessitates focusing on microbes. B a c t e r i a -  more accurately eubac- 
teria and archaea, two very different groups that are often lumped together 
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have limited morphological diversity but tremendous catabolic, metabolic, and 
sensory diversity and in almost any environment some can live. Concomitantly, 
the genetic diversity of bacteria is enormous (by some measures, the genetic di- 
versity just among E. coli  is greater than that among all vertebrates). Because 
many species of bacteria can be grown in the lab and population sizes are large, 
evolution of a variety of functions and ecologies of interacting species can be 
studied in the laboratory. 

Experimental evolution has, thus far, not been a large field. But there have 
been a variety of experiments over the years and considerably more recently. 
Evolutionary experiments on multicellular organisms are primarily selective 
breeding: sexual recombination of genes in the existing gene pool, sometimes 
together with a limited number of mutational changes, can be selected on to 
produce remarkable variation. A the opposite extreme are viruses which have 
high mutation rates, can evolve rapidly, and have small enough genomes that re- 
sequencing of multiple strains can be done efficiently. Laboratory evolution of 
phages, viruses that infect bacteria, is a growing field. But bacteria have the great- 
est potential for laboratory evolution: they have short generation times and high 
population densities, tremendous natural diversity, and they can be manipulated 
genetically in many ways including adding genes and selectively mutating 
parts of their genomes. And sequencing costs are now becoming low enough to 
re-sequence the whole genomes of evolved strains. Combinations of evolving 
and engineering bacteria as well as individual proteins are being used to develop 
useful bacterial functions, such as to clean up environmental waste or manufac- 
ture particular chemicals. 

Laboratory evolution of bacteria with the goal of understanding evolution- 
ary dynamics is beginning to b u r g e o n -  if perhaps less so thus far than one 
might hope. Such experiments go back to Leo Szilard's chemostats in the early 
1950s. [5] And the Delbruck-Luria experiments to directly observe the effects 
of new mutations that occur in the lab probe the most basic evolutionary pro- 
cess. [6] In recent years, Richard Lenski and his collaborators have taken the 
lead with a spectrum of experiments, mostly with E. coli  ~ molecular and cel- 
lular biologists' favorite bacterium. Their primary experiment, evolving E. coli  

to grow better in low glucose, has gone on for almost twenty years and 40,000 
generations. [7] A wide range of interesting results have come from this one ex- 
periment. Some of these could not have even been found without the leaps in 
biological methods and knowledge that took place while the experiment was be- 
ing carried out. Unfortunately, there is not the space here for even a cursory 
review of these or other experiments. 

For interpreting and guiding laboratory experiments, theory has already played 
an important role. But much more is needed, both for this, and more generally to 
develop a broader understanding of evolution. 
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1.2.2. Types of theory 
There are three general types of theory that are needed to understand evolution- 
ary dynamics. First is phenomenological theory which starts from a mapping 

or statistical aspects of it between some set of genetic changes and the 
corresponding phenotypic changes: specifically, the effects of these on fitness 
in some defined set of contexts, including interactions between organisms. For 
such approaches, the biology is assumed given and the focus is the evolutionary 
dynamics that this drives. A second type of theory incorporates m and strives 
to i n f o r m -  some understanding of aspects of the molecular and cellular biol- 
ogy: for example, evolution of signaling pathways or metabolic or regulatory 
networks. A third type of theory is abstract modeling: formulation and analysis 
of simple models that incorporate a few essential features with the goal of devel- 
oping concrete understanding of these, and m especially crucial for evolution 
how to extrapolate over broad ranges of parameters. Such models need have no 
connection to biology: understanding evolutionary processes in far simpler con- 
texts - -  e.g. "genetic" algorithms in computer science ~ should enable a focus 
on aspects that are well beyond our ability to even model in biology. The hope, 
of course, is applicability at least of the gains in understanding beyond 
the specific models. Analogies of all these types of theory have played crucial 
roles in physics, especially condensed matter physics. In evolutionary dynamics, 
phenomenology has dominated, molecular-interaction based theory is just now 
developing, and instructive abstract modeling is almost nonexistent. 

Simulations can also play a role in understanding evolutionary dynamics, es- 
pecially for exploring different scenarios and processes. But there are fundamen- 
tal and ubiquitous difficulties with simulations of many interacting components 
(here individuals, genes, etc). These are particularly problematic for evolution 
because of its crucial dependence on rare events and the very broad spectrum of 
time scales involved. In the absence of a good theoretical framework, it is impos- 
sible to extrapolate reliably from the ranges of parameters that can be studied in 
simulations to other much larger or smaller parameters ~ even if no new qualita- 
tive features arise in the more realistic regimes. Furthermore, as soon as there are 
more than a few features and parameters in a model, it is hard to infer which are 
the essential aspects on which some observed behavior depends. Thus most sim- 
ulations are analogous to macroscopic evolutionary theory and yield little useful 
quantitative information. It is too easy to find evolution in simulations ~ but too 
hard to learn much beyond the specific model. 

The focus of these lecture notes is almost exclusively phenomenological the- 
ory m as we shall see, even this rapidly becomes difficult. But we conclude with 
a few comments about broader needs: for abstract modeling at the one end and 
for incorporation of biological architecture and organization molecular and 
c e l l u l a r -  at the other. 
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1.3. Numbers 

Before trying to develop any quantitative theory, we start with some numbers. At 
this point, it is not at all clear which numbers are important: understanding this 
is one of the long term goals. 

1.3.1. Genomes, genetic changes, and genetic differences 
First, some typical sizes of genomes: the number of genes, and the size of the 
genome in base pairs: bp. Note that these vary substantially within groups of 
organisms, and in some species can be much larger than the sizes given here. 

Small viruses: 104 bp. 10's of genes 

Bacteria: 10 6 - 7  bp. 500 to thousands of genes 

Budding yeast: 2 × 107 bp. 6,000 genes 

Humans: 2 × 109 bp. about 25,000 genes 

Viruses cannot reproduce on their o w n -  and thus are not really alive: they are 
basically parasitic bits of genetic material. Bacteria and archaea are prokaryotes 
which do not have nuclei. They normally reproduce asexually but can exchange 
DNA. [8] Budding yeast (wine-making yeast), one of the best studied laboratory 
organisms, is a single celled eukaryote: it has a nucleus and other organelles sim- 
ilar to all animals. Yeast can reproduce either sexually or asexually. In humans, a 
good fraction of the genes have a clear homolog m a common ancestor m in the 
yeast genome. It is remarkable that with only a factor of four more genes than 
yeast, all the complexity of higher animals can exist. Some of the non-protein- 
coding parts of genomes are involved in gene regulation which is successively 
more complicated going from bacteria to yeast to multicellular organisms. Yet 
unlike in the single celled organisms, most of the much larger genomes of ver- 
tebrates and the even larger ones of plants n has no known function. Thus 
what the essential size of the information in these genomes is is unclear m quite 
possibly an order of magnitude smaller than their total size. 

Mutation rates are remarkably small. The simplest mutations are single base 
mutations: changing, for example, from an A to a G. The rates of a subset of 
these are found directly from observations, although mutation rates can vary sub- 
stantially throughout a single genome because of the local context and other fac- 
tors. There are many other types of mutational changes: insertions and deletions, 
duplications (including of whole genes and even whole genomes), transposable 
elements that move around the genome, etc. Far less is known about the rates 
of these, but cumulatively the number that occur is in a similar range to the total 
number of point mutations that occur. 



Evolutionary dynamics 405 

Point mutation rates in units of per base pair per generation and per genome 
per generation give a sense of the numbers. For viruses, mutation rates are very 
high, as much as 10 -4 per bp, and 10 ° per genome. Bacteria replicate their DNA 

with remarkable accuracy with point mutation rates reported as low as 10-9½ 
per bp, although an order of magnitude higher may be more typical. These cor- 
respond to rates of any error at all in the whole genome of 10 -2 or less per 
cell division! Humans reproduce DNA less accurately than bacteria about 10 -8 
mutations per bp corresponding to 101 mutations per genome although the 
comparison is somewhat unfair as it takes many cell divisions for a human egg to 
produce another human egg. 

The magnitude of genetic differences between individuals within a species and 
between species are also instructive. Human genomes differ from each other by 
about one part in a thousand, chimpanzee and human by about a part in a hundred, 
and human and mouse by about fifteen percent. 

Bacterial genomes vary enormously. And in many bacterial p h y l a -  the high- 
est level classification no organisms are known! Their existence is inferred 
from ribosomal RNA (rRNA) sequences which differ considerably from those of 
previously known phyla. [Ribosomes, the most basic machine crucial to all life, 
convert DNA sequences, via messenger RNA, to proteins. Their functional core 
is itself RNA that is coded for by genomic DNA.] As bacteria normally repro- 
duce asexually, species are not well defined. But in recent years similarities in 
rRNA have been used to loosely define bacterial species: e.g., if these differ by 
less than about 3%. But even with a tighter definition of 1% m comparable to 
human-mouse differences in rRNA sequences m a single species of bacteria can 
have widely varying sizes and contents of their genomes, with a core of half or 
so genes in common, and the others completely different. 

Beyond mutational changes within an individual organism's DNA, genomes 
can change by recombination of DNA and other mechanisms of DNA transfer 
between organisms. Most species of eukaryotes reproduce sexually at least some 
of the time: in some cases, always, in others - -  such as yeast ~ only occasion- 
ally with many generations of asexual reproduction in between. Bacteria, while 
normally asexual, have various mechanisms for acquiring DNA from other bac- 
teria, both from members of the same species, and from unrelated species. [8] 
Little is known about the rates of these processes except in particular circum- 
stances. 

1.3.2. Populations and generations 

Mutation and recombination provide the genomic variability and thus the kind of 
experiments nature can perform. But the number of such experiments is deter- 
mined by population sizes and the numbers of generations available. 
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In a human body, there are of order 1014 cells. But a human is host to an order 
of magnitude larger number of bacteria. World wide, the number of cells is even 
more dominated by bacteria. 

Total number of bacteria: Good estimates are difficult as many of the environ- 
ments in which bacteria live, especially deep into the earth, are hard to sample. 
A recent upper-range estimate of the total number in all environments is 10 31 . [9] 

Number of bacterial generations: The time between cell divisions in bacteria 
varies widely. The conventional figure for E. coli is twenty minutes: 103 seconds. 
But this is in optimal conditions in the lab. In human guts, the turnover time, and 
hence average division time, is a few days, so 105-6 seconds is more realistic. In 
other environments, divisions may be far less frequent, even many years: > 108 
seconds. If we take an optimistic value of 105 seconds for a mean generation 
time, then in the few billion years since the first bacteria, the average number of 
bacterial generations is 1012 ~ roughly the evolutionary time in dimensionless 
units. 

Total number of bacterial cell divisions: From the above estimates, the total num- 
ber of cell divisions since the first bacteria is of order 10 4 3  - -  although this may 
well be an overestimate by a few orders of magnitude. For those who like natural 
logs, this is about e 1°°, an easy number to remember. 

Vertebrates: I do not know of estimates of the total number of vertebrates, but 
1015 is likely an overestimate. Even with ten generations per year, this would give 
less than 1025 total vertebrate births ever. Since chimpanzee and man diverged, 
there have been perhaps of order 1012 individuals. Thus any given base pair has 
mutated only about a total of 104 times in all these in individuals together. In 
one lineage, only about 1% of the base pairs have mutated m 106 generations at 
a rate of 10 -8 per generation ~ the observed differences between humans and 
chimps. 

1.3.3. Explorations of genome space 
The total size of genome space is enormous: even with a few megabases of DNA 

for bacteria: of order 10106 possible sequences. A drastic overestimate of the 
number of sequences ever explored by nature (since early cells) is from the total 
amount of DNA ever produced 10 4 3  × 107 ~ 105°. Assuming this was completely 
random, it would still provide less than the number of possible sequences of 90 
nucleotides (four types). Thus only sequences of at most 30 amino acids 
not much larger than a single functional domain of a protein and too small to 
be considered a protein on its own m could have been fully explored. And the 
actual extent of the exploration of sequence space is surely far less. 
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A better way to think of these numbers is in terms of the size of steps that can 
be taken in genome space. Because mutation rates are low, complex mutations, 
in which K changes happen in one cell division, are very rare. But beyond single 
mutations that increase fitness or are at worst neutral in the present environment, 
efficient exploration of genome space would seem to require genetic changes that 
involve downhill steps. If K changes are needed for the new genome to be fitter, 
a crude estimate of the rate of this process is K mutations in the same generation: 
i.e., mutation rate to the K th power. Even with point mutation rates of 10 -6 per 
b p -  which bacteria can often not survive the maximum K for a multiple- 
point mutation that could ever have occurred in any bacterium is about K = 7. 
In a more concrete context: for all E. coli in all humans ever, at rates of 10 -9 per 
bp, all possible three-point mutations could have taken place, but almost none of 
the possible four-point mutations. Of course, these may be large underestimates 
because the multi-point mutations need not happen in one cell division if the 
intermediaries are not lethal: we discuss this point later. 

How to think quantitatively about the effects of sexual recombination is less 
clear. If this acts primarily to move around already evolved genes, then one 
needs to consider recombinations at this level and consider how efficiently gene- 
combination space is explored. Or perhaps protein-domain space is better to 
consider. 

1.3.4. What numbers matter? 
Whether one thinks of 1012 generations, or even e 1°° cell divisions ever, as enor- 
mous enough numbers to obviate the need for quantitative thinking about evolu- 
tionary dynamics, depends, perhaps, on one's background. But, as we shall see, 
even in the simplest idealized situations, it is not known which combinations of 
parameters are most important for determining the evolutionary potential. My 
own belief is that the current lack of understanding of evolutionary dynamics 
is high enough that, except for knowing answers from nature, one cannot have 
concrete expectations. And from nature we only know about long time scales 
with natural mutational processes and population sizes. To understand evolution 
on shorter time scales in the lab, especially if genetic changes and selection can 
be made far more efficient than in nature, surely requires far better quantitative 
understanding. 

2. Analysis of phenomenological models 

The primary focus of these lectures is phenomenological theory with the mapping 
of possible genetic changes to fitness assumed. How this is determined by the 
biology, we only discuss briefly at the end. Due to both time limitations and 
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the difficulty of the problems, we only consider some of the simplest situations. 
And we focus on asexual reproduction which is much easier to analyze. The 
introductory aspects are well known [10, 11 ], although I hope the way they are 
discussed here will provide additional insights: these are needed for even the 
slightly more complicated situations that are discussed later. 

2.1. General formulation 

We are interested in the dynamics of interacting populations of asexual organ- 
isms which reproduce or die and can mutate to other genotypes. Defining the 
population with genome ot to be n~, we consider the simplest situation in which 
there is no spatial structure. For the aspects we are interested in the details of the 
cell division and death processes do not matter much. A simple model is to con- 
sider these to be continuous time processes with birth rate, B~, death rate D~, and 
mutation rate from genome 13 to genome c~, M ~ .  Because of the stochasticity, 
we need to study the joint probability distribution of all the {nc~ }. This changes 
with time: 

P r o b [ n ~ ( t + d t ) ~ ( t ) + l ] = d t [ B ~ n ~ - n ~ ~ M ~ + ~ M ~ n ~ ]  (2.1) 

Prob[nc~(t + dt)]~(t) - 1] = dt D~n~. (2.2) 

The ecology enters in the dependences of the birth and death rates on the 
environment and the other organisms: 

B~ -- B~(n~, {n¢~}, t) (2.3) 

and similarly D~, with the explicit time dependence from changes in the environ- 
ment. More realistically the populations and environment also depend on spatial 
location and the mobility of the organisms is then also be important. But even 
without this, the system is complicated enough. The dynamical evolution equa- 
tions are very general but, like the many body Schrodinger equation in physics, 
almost totally useless! 

The simplest ecology is when all individuals of all species are competing for 
the same resources: i.e., with competition only with the total population 

N(t) = Z n~(t). (2.4) 
Ol 

Except for initial transients, in a constant environment this competition can be 
taken into account by ensuring that for each birth there is a death and vice versa 
to keep N constant at the carrying capacity of the environment. This is a simple 
enough situation to analyze various aspects of, and will be the focus of these 

lectures. 
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2.2. Deterministic approximation 

If, as is usually the case with microbes, the populations are large, it is tempting 
to approximate the dynamics as deterministic. In this limit the populations can 
be treated as continuous variables with 

dn~ 
rP°~n~ + Z [M~n¢~ - M~n~] (2.5) 

dt 

with (P~ - B~ - Dc~ the growth (or decay) rate of population c~ now reflecting 
both birth and death processes. 

With the simplest competition, N can be kept constant by taking 

1 
*,,  (n~, {n/~}) - ¢~ - ~ Z ¢~n~ - ¢~ -q~(t)  (2.6) 

t~ 

with ¢~ the (constant) "fitness" of organisms ee in this e n v i r o n m e n t -  how fast 
a population n~, would grow in the absence of any competition. The organisms 
compete only with the mean fitness, ¢(t) ,  of the population. In this simplest 
ecology, {¢,, }, together with connections between genomes given by the non- 
zero elements of the mutation matrix, can be thought of as a "fitness landscape". 

The rate of change in the mean fitness of the population is simple if the muta- 
tion rates are small enough that selection dominates. From Eq. (2.5) this is found 
to depend only on the variance of the fitness within the population: 

var[¢], (2.7) 
dt 

a general result that is valid when the effects of mutations can be neglected: 
it is known as the "fundamental theorem of natural selection". But a crucial 
question is then" What determines the variance? Its dynamics will be controlled 
by the third cumulant, whose dynamics is controlled by the fourth cumulant, 
etc. And if mutations really can be neglected, the fittest individuals will take 
over the population and the evolution soon stop. Nevertheless, on short time 
scales selection on existing variance in a population will increase the fitness at a 
rate proportional to the variance. This is often used to estimate evolution rates. 
But, disturbingly, it is often assumed that such variance can be maintained and 
continue to be selected on even though for this to happen requires mutations. 
An extreme example of the dangers of such an assumption was discussed in the 
introduction. 

We now consider more generally the deterministic approximation to the dy- 
namics with mutations included. With the simplest competition, ¢(t)  plays the 
role of a Lagrange multiplier and the dynamics, Eq. (2.5) is effectively linear. 
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Thus at long times, the behavior will be determined by the largest eigenvalue 
of the fitness-plus-mutation matrix with a steady state represented by the largest 
eigenvector eventually being reached. 

In situations in which there is an optimum genome - -  the highest peak in the 
fitness landscape m the equilibrium population will be distributed among this op- 
timum, say c~ = 0, and genomes a few mutations away from it which are nearly 
as fit. For example, the relative population size of a deleterious mutant,/3, with 
fitness lower by 3~ = 4~0 - 4~ which is produced from the optimum genome at a 
rate M¢~0 will have an equilibrium population n~ ~ noM~o/313. [Here and later, 
we ignore "back" mutations, here/3 ~ 0. This can be justified in many, although 
by no means all, situations.] An equilibrium distribution around a fitness maxi- 
mum is known as an Eigen quasispecies - -  Eigen rather than eigen after Manfred 
E i g e n -  and is a useful concept in situations with high mutation rates, especially 
viruses. But if ~ as is always the case in n a t u r e -  fitter genomes exist but are 
far away from the genomes of the existing populations i.e. requiring many 
mutations to reach ~ then the deterministic approximation will (almost always) 
give complete nonsense! 

In practice, or course, any fitness maximum is only a local maximum: there 
will always be fitter genomes further away. To illustrate the effects of this, it 
is useful to analyze a simple example. Consider an effectively one dimensional 
landscape in which the genomes are labeled by an integer x with a peak at x - 0 
with q~0 - 0, a valley of width W of depth 3, i.e. q~x = - 3  for x = 1, 2 . . .  W, 
separating it from a higher peak at x = K = W + 1 with 4~/~ - s  > 0. Mu- 
tations occur at rate m that take x to x + 1 for x < W. Again we ignore the 
effects of back mutations that decrease x: here this is justified if m << 3, as we 
assume. Population losses from the "forward" mutations are equivalent to shift- 
ing all fitnesses by m, which we can hence also ignore. If the population of size 
N initially all has genome x = 0, the dynamics is straightforward to analyze in 
the deterministic approximation. One finds 

( ) x [  m ( ~ ) ]  
nx -- N ~ 1 - e -~t (3t)Y (2.8) 

\y=0 y! 

for x < W. There are two regimes: for t << x / 3 ,  n~ ,~ N e - ~ t ( m t ) X / x !  while for 
t >> x / 3 ,  the steady state distribution in the valley is achieved: nx ,~ N ( m / 3 )  x. 

The steady state thus "propagates" at speed 1/3. Analysis of the population at 
the peak, n/~, shows that already at times, t > rnuc ~ W / ( 3  + s), n I~ grows ex- 
ponentially at rate s. The time rnuc is the dominant time at which the mutations 
to the fittest genome appear: the apparent nucleation time (determined by a bal- 
ance between the exponentially small rate of mutations to the fittest population 
and its exponential growth). But something is worrying: rnuc does not depend 
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w In[(3 + s)/m] after rnuc, the on the mutation rate! A "sweep" time rsw ~ 5-- 
fittest population will take over and become the dominant population. This does 
depend weakly on m but only because the fitter population at t = rnuc is of order 
N[m/(6 + s)] x because of the K mutations needed to reach it from the original 
genome: after it has been reached, the fitter population grows exponentially. 

2.3. Failures of deterministic approximations 

Are the above results reasonable? That depends on the question. For times 
shorter than rnuc + rsw, the population is still dominated by the original un- 
mutated population. Thus ~(t) has changed very little and ignoring the com- 
petition entirely should be legitimate. In this case, averaging the stochastic dy- 
namical equations will result in exactly the deterministic approximation which 
would then correctly yield (n K (t)) and the time at which this average becomes 
of order N would be correctly given by the above analysis. But is this the fight 
question? We must examine how the average arises. From the above analysis 
we see that at the time rnuc when the last mutations occur that dominate the later 
behavior of the fittest population, this average population (n/() is a very small 
fraction of the total. Indeed, unless N > [6/m] K which is huge for small 
mutation rates and broad valleys m there is, on average, much less than one fit 
individual at the time rnuc. But this must mean that something has gone wrong 
with the analysis or that the average is a very misleading quantity. The lat- 
ter is indeed the case unless the population sizes are really enormous, but how 
enormous will depend on the specific context. In general, as we shall see, taking 
averages is very misleading for evolutionary dynamics. 

There is a very important lesson from the failures of the deterministic approx- 
imation. In physics, when the number of constituents (atoms, etc.) is large, ther- 
modynamics and other approaches that focus on average quantities with small 
fluctuations around these are good. The basic starting points for theoretical treat- 
ments are often called mean field theories, and fluctuations can usually be added 
systematically to these. More generally, the enormous power of the renormaliza- 
tion group framework relies on - - -  and leads to understanding of m the simpli- 
fications that occur with large numbers and long time scales. In a broad range 
of contexts, this justifies the ideas of universality: dependence of many features 
of large systems on only a few aspects of the microscopic structure and interac- 
tions. But evolutionary dynamics has a crucial component that is very different. 
Mutations that arise initially in one individual can take over the whole popula- 
tion. And individuals that migrate to a new environment can give rise to new 
populations. Thus rare events are essential. Much of the difficulty in understand- 
ing evolutionary dynamics even when the genome-to-phenome mapping is 
known - -  comes from the interplay between such rare individual events and the 
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approximately deterministic dynamics of populations once they become large. 
Conventional "mean-field" like approaches are thus doomed to failure. 

To go beyond the dangerous deterministic approximation, and to gain some 
intuition we turn to the simplest evolutionary system: a fitter population being 
fed by stochastic mutations at a fixed rate N m  from an original population (this 
is equivalent to W = 0 in the above). But first we have to understand individual 
populations with stochastic dynamics. The remainder of this section is all stan- 
dard material but we emphasize heuristic arguments rather than exact results to 
gain intuition which is needed for more complicated situations for which exact 
analysis is too difficult. 

2.4. Single populat ion 

A single population without mutations is the simplest context in which to un- 
derstand the stochastic dynamics of the birth and death processes. For now we 
ignore any limits on the population size. [The specific continuous-time model 
we study is somewhat different than the conventional ones with discrete gener- 
ations. [10, 11] Nevertheless the key aspects of the behavior are the same; we 
comment later on the differences.] 

Define Pn (t) a s  the probability that there are n individuals at time t. Then 

dpn 

d t  
= B(n  - 1)pn-1 + D(n  + 1)pn+l - (B -k- D)npn  (2.9) 

so that B - D is the growth rate of the mean population: 

d(n)  

d t  
= (B - D) (n ) .  (2.10) 

The variance grows proportional to (n) 

var[n] 

dt  
= (B + D) (n )  (2.11) 

so that the effective diffusion constant of the population distribution around its 
mean is ~ (n). This should be expected given the stochastic birth and death 
rates proportional to n so that variations around the mean after one generation are 

of order ~/-ff. 
Before analyzing the dynamics of the distribution Pn in detail, it is instructive 

to try making some heuristic arguments to see if we can guess the behavior. For 
more complicated situations, we will have to rely on such arguments, so we had 
better get some practice! It is convenient to work in units of generations defined, 
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for convenience, by setting the death rate D = 1. The net growth (or decay) rate 
of the population per generation is defined as 

B - D  
r = . (2.12) 

D 

Consider a large initial population of size no >> 1. There are then two char- 
acteristic time scales. The first is the obvious one: 1/Irl for growth or decay of 
the mean. The second is associated with fluctuations, referred to in the context of 
evolutionary dynamics as drift. Drift is simplest in the neutral case: i.e. the mean 
growth rate, r, is zero. As long as the deviations from no are small compared to 
no, we can approximate the fluctuations around the mean by a diffusion constant 

no so that 

n(t) ~ no ± 0(~/~) (2.13) 

valid until t ~ no by which point the variations will have either decreased or 
increased in magnitude due to the accumulated changes in n. Thus the charac- 
teristic time scale for the fluctuations to substantially change the population is 
of order no generations. If the population happens to decrease by, say, a factor 
of two over this time interval, then the time scale for another factor of two de- 
crease, if it occurs, will be of order no~2, the next factor of two decrease in no~4 
generations, etc. From this we can guess that the characteristic time in which 
the population can fluctuate away e n t i r e l y -  i.e. become e x t i n c t -  is of order 
no. Although this argument is sloppy, we will see that it is basically correct: a 
population, no, with no mean growth or decay is likely to die out in of order no 
generations with substantial probability. If it has not died out, then it is likely to 
have increased: this must be the case as the mean population is unchanged. The 
above argument suggests that, if it has not died out, the population will typically 
have increased in no generations by of order a factor of two. 

For a population with a small mean growth rate, r << 1, the time scale for 
fluctuations to drive the population to zero will be shorter than that for it to grow 
on average if no << 1/r .  Thus we expect that there is a characteristic population 
size of order 1/Irl: for n >> 1/Ir] the population is very likely to grow (or decay 
if r < 0), while for n << 1/Irl its behavior is dominated by fluctuations and it 
might go extinct. 

What if the initial population is no -- 1 ? Again, first consider the neutral case. 
In spite of this neutrality, after a time of order unity there is a substantial chance 
that the population will have died out. If it has not, it is likely to be larger, say of 
order 2. A time of order 2 later, there is again a good chance that is will have died 
out, if it has not done so, then it will be of order 4, etc. If it survives up to time t, 
then we can guess that n(t) will be of order t, but with a broad distribution around 
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this, presumably with width of order t. What we cannot get from this argument 
is the probability that the population will survive to a time t. But this argument 
does suggest that the conditional probability, q, of surviving for a further time t, 
given that it has not until time t, is roughly independent of t. If the conditional 
survival probability from t to 2t is roughly independent of that from, say, 16t to 
32t, then the probability of survival up to a long time t is roughly the product 
of log 2 t factors of q. This suggests that the probability of survival is of order 
e - x l n t  = 1 / t  K with some exponent tc ~ In(l /q) .  Such behavior is reminiscent 
of a conventional one-dimensional diffusion process with an absorbing boundary 
at zero. Indeed, the behavior could have been guessed by considering the variable 
y -- 2~/-ff which fluctuates with an effective diffusion coefficient of unity [since 
n / (~ / - f f )2  _ O(1)]. The survival probability for a time t of a such a random 

1 walk in y is of order 1 /47  suggesting xR w = ~.. This argument is tempting but 
wrong! 

But we can get the fight answer for the survival probability using some ad- 
ditional information. We know that the average ( n ( t ) )  = 1 for all t. From the 
above discussion we expect that n ( t )  is either of order t, or exactly zero. This is 
only consistent if the probability of it being non-zero is of order 1/t" i.e. x = 1. 
Note that we have here combined heuristic arguments with an exact result (which 
by itself was somewhat misleading) to obtain a concrete prediction. 

Let us now analyze the behavior more carefully. The evolution of the proba- 
bilities can be analyzed exactly from Eq. (2.9) by using the generating function 

Q (z) - ~ z n Pn, (2.14) 
n 

but the results are somewhat messy. For the simplest case, starting with a popu- 
lation no = 1, the solution can be guessed: 

po  = 1 - h ( t )  (2.15) 

and 

Pn = h(t)[(1 - a(t)] [a ( t ) ]  n - 1  for n --fi 0 (2.16) 

with 

a 
(1 -t- r ) (1  - -e  - r t )  

1 + r - e - r t  

and the survival probability 

h 
1 + r - e - r t  

(2.17) 

(2.18) 
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If r is negative, the survival probability decays to zero exponentially as ex- 
pected, but with a small coefficient that is not obvious" h ~ ( - r ) e  - ( - r ) t  for 
r < 0. For r > 0, the population has a non-zero chance of surviving forever: for 
t --+ cx~, h ~ r / (1  + r). l f i t  survives, the population typically grows exponen- 
tially: the condit ional  mean given non-extinction is 

1 (1 + r)e  r t -  1 
(nln ~ 0) = = " (2.19) 

1 - a  r 

note the prefactor which is large, ~ 1/ r ,  for small growth rate. We call the prob- 
ability that the lineage descended from one individual survives to grow exponen- 
tially, the establ ishment  probabil i ty ,  ~. For this simple dynamics, E -- r / (1  + r). 
The result Eq. (2.19) should be contrasted with the mean population (n) -- ert = 

h (nln ~ 0) in which there are two - -  misleadingly - -  canceling factors of r" 
arguing on the basis of the overall mean population is thus very dangerous! It 
is the (much larger) conditional mean that reflects the typical size of the popu- 
lation given that it survives. But even if it does survive, the distribution of n is 
still broad: it is exponentially distributed with, e.g. standard deviation around the 
mean that is of order the mean itself. But it does have a "typical" scale which is 
well characterized by the conditional mean. 

For the neutral case, the survival probability is 

h - (2.20) 
l + t  

so that as we guessed, the exponent x - 1 determines its decay The conditional 
mean population if it survives is 

(n In ¢ 0) = 1 + t (2.21) 

again confirming the heuristic argument given above. We shall see shortly why 
1 fails. the random walk analogy, which suggested xR w = ~. 

We can use the results for the neutral case to better understand the behavior 
in the growing case with small r. For a time, rest, of order 1 / r ,  the fluctuations 
dominate the dynamics. Through this time, the survival probability is only of 
order r ~ 1/rest. But if the population survives this long, it is likely to be of size 
of order rest ~ 1 / r  (as from Eq. 2.19). Then the deterministic growth takes over 

1 ert and and the population starts to grow exponentially. Thus (nln ~ O) ~ r at 
later times. This process is the establishment of the population: it has survived 
long enough for t ~ rest to become large enough, n ~ 1 / r ,  to grow 
exponentially. Eventually, of course, such exponential growth must slow down 
and the population saturate. But we have been ignoring, so far, any limits on the 
population size: we will discuss these shortly. 
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Once we have the results for no = 1, we can find the behavior for general 
no by observing that each of the no initial lineages behaves independently and 
n(t) is the sum of the sizes of each of these lineages. Thus Prob[n(t)lno] is the 
convolution of Prob[n(t)ln(O) = 1] with itself no times. In the neutral case for 
large no, we can check the heuristic argument that after a time of order no there 
is a substantial chance that the population has died out. The probability that a 
particular one of the lineages survives is of order 1/t. Thus the probability none 
survive is ~ (1 - l / t )  n° ,~ e - n ° / t  which indeed starts to grow substantially 
when t --~ no - -  as expected. For r > 0, the survival probability for infinite 
time is similarly found to be large for no >> 1/r:  this supports the basic picture 
that once a population reaches ,~ 1/r  it is likely to become established and grow 
exponentially from then on. 

At this point, we should pause and ask which of our results are general and 
which are specific to the detailed model of the dynamics. We have analyzed the 
case in which reproduction and death are continuous time processes that occur at 
some rates, B and D, respectively. In many situations, a more realistic model is 
discrete generations with a distribution of number of offspring in the next gener- 
ation, and death of the parent. The neutral case corresponds to a mean number 
of offspring being unity. Slow growth corresponds to mean number of offspring 
of 1 + r, resulting in a growth in the mean population of r per generation. But 
the fluctuations with this dynamics is somewhat different: in particular, it will 
depend on the variance in the number of offspring when the population is large, 
and, when it is small, can depend on the whole distribution. Nevertheless, the 
overall behavior is very similar: the diffusion of the population is proportional to 
n for large n, in the neutral case the survival probability to a long time t is pro- 
portional to 1/t,  and the probability of establishment of the population starting 
with one individual is, for small r, proportional to r. But the coefficients of these 
depend on the details of the dynamics. In particular, the establishment probabil- 
ity for small r is in general cr with the constant c depending on the reproduction 
and death processes. 

2.5. Continuous n diffusion approximation 

If the growth or decay rates are small and one is primarily interested in the dy- 
namics of populations over many generations, the behavior simplifies. Most pop- 
ulations will be either relatively large or zero: as we have seen, if n is small, it is 
likely to become either zero or substantially larger in a relatively short time. It is 
thus natural to try and approximate the population as a continuous variable - -  but 
with zero playing a special role. Surprisingly, this is a good approximation. We 
can guess the appropriate stochastic Langevin equation, but have to be careful 
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what it means" 

61/ 
-- rn + v/frO(t) (2.22) 

dt 

with 77 gaussian white noise with covariance (0(t)0(t ' ))  = 2 6 ( t - t ' ) .  [In general, 
the strength of the noise will depend on details of the birth and death processes, 
we choose the value that corresponds to the continuous time dynamics analyzed 
above.] The correct interpretation of Eq. (2.22) is the Ito one with n(t + dt)(t) + 
dt[rn(t) + ~n-~)0(t)] .  This means that the probability density p(n, t) satisfies 

Op O(rnp) 02(np) 
Ot -- On -t- On 2 (2.23) 

with the n inside both derivatives in the diffusive-like term. As can be checked, 
this is necessary for the mean (n) to grow proportional to (n). 

To see how the naive argument for the survival probability from diffusion of 
the variable y = 2Vcfi - goes wrong, we need to contrast the Ito convention with 
the less-physical Stratonovich one often used by physicists. In the Stratonovich 
convention, the noise effectively acts at time t + d t /2  so that in our case its coef- 
ficient is ~/[n(t + dt) + n(t)]/2. The diffusion coefficient proportional to n then 

appears in the form: ~ [ n ~ ] ,  But this would yield d(n) /d t  - r(n) + 1 which 
is not correct. In the Stratonovich convention, variables can be changed straight- 
forwardly and a diffusion equation for n with diffusion coefficient n is equivalent 
to that for y with diffusion coefficient unity. But with the Ito convention, one 
must be careful changing variables: if q(y, t) is the probability density of y, then 

Oqot ~ - -  Ova {[L~' - T]q}l _jr_ ~OZq0y 2 which corresponds to an extra term that drives y to 

zero. If this term had not been there, the survival probability would have decayed 
as 1/4~-. But in its presence, the pushing of y towards zero has a comparable 
effect to the stochastic parts for any y: it changes the survival probability to 1/t .  

A simple solution for p (n, t) can be found which is analogous to that we found 
above for the discrete-n distribution. For the neutral case this is 

p -  ~ e  + 1 -  8(n). (2.24) 

If we change t to t + 1, this roughly corresponds to starting with n around 1, 
although we cannot take this solution or the continuous n approximation m 
seriously for n -- (.9(1). We leave it as an exercise to find the corresponding 
solution for r -¢ 0 of the form 

p - hye  -×n + (1 - h)g(n) (2.25) 
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with d y / d t  - - r y  - y2 and the survival probability h = e x p ( - f o  d t ' y )  and 
to show that it yields the same behavior as the proper discrete analysis in the 
appropriate regimes of r, n, and t. This, and the general solution, can be found 
by Laplace transforming Eq. (2.23) in n to )~: the resulting first order partial 
differential equations in t and )~ can be solved by method of characteristics. The 
Laplace transform is analogous to the generating function, Q(z), for discrete n: 
using the latter results in a similar PDE. 

2.6. Problems with averages 

It is, perhaps, somewhat surprising that the continuous n approximation works so 
well. As discussed above, the problem with the deterministic approximation ap- 
pears, naively, to do with the role of fractional individuals which are also present 
in the continuous approximation. But the latter does include fluctuations whose 
form, being proportional to ~/-ff, is related to the crucial role of zero populations. 
In the continuous approximation, in contrast to the deterministic approximation, 
strictly-zero populations exist and non-zero populations smaller than unity are 
rare. This is the primary reason that average populations are often a very poor 
characterization of the distribution. As we have seen in the simple situation of 
a single population with a slow mean growth rate, the average is completely 
dominated by rare instances in which the population is anomalously large m the 
population is usually zero m and in those rare cases it is much larger than would 
be guessed from the average. Thus in our earlier example of evolution in a fitness 
landscape with a broad valley separating two peaks, we can guess that, typically, 
after time rnuc + rsw when the average of the fittest population becomes of order 
N, in actuality it will almost always be zero. This means that in the very rare 
cases in which it is non-zero it must be much larger than its average. When this 
occurs, the total population will have already become much large than N and 
we are no longer justified in ignoring the fixed total N constraint: the role of 

m 

the mean fitness of the population, 4~(t), becomes very important. But since this 
dependence makes the birth and death rates depend on the {n~}, averaging of the 
dynamical evolution equations can no longer be done straightforwardly: indeed, 
it becomes very tricky, involving all higher moments ~ and not very useful. 

2.7. Mutant population and selective sweeps 

Thus far, we have only analyzed simple population dynamics without selection 
or mutations or even limited total resources: we have allowed n to become arbi- 
trarily large. If there are limited resources so that the birth and death rates depend 
on the population size, then the dynamics is already much harder to analyze ex- 
actly. A more interesting situation is two populations that are competing for total 
resources. If the competition results in the total population size being fixed, this 
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is equivalent to a particular form of population-size dependence of the birth and 
death rates. 

Consider a population offixed total size N, that consists of one population of 
size n - -  which for future purposes we will call the mutant p o p u l a t i o n -  with 
birth rate b and a n o t h e r -  conventionally called the "wild-type" population - -  of 
size N - n  with birth rate B. To keep N fixed, for each birth one randomly chosen 
individual dies. With probability n /N  this will be a mutant: thus n will increase 
only if the birth is a mutant and the death a wild-type, while it will decrease only 
if the birth is a wild-type (which occurs at overall rate B(N - n)) and the death 
a mutant. Thus the effective birth rate for the mutants is b(1 - n/N)  and the 
effective death rate is B(1 - n/N).  Even in the continuous approximation, the 
dynamics now becomes much harder to analyze exactly (special functions, etc. 
are required). But using a combination of the intuition gained for the simplest 
case, and a few results that are easy to derive, we can understand as much as we 
want. 

First, consider the neutral case in which both populations have the same birth 
rate b -- B --- 1 (and hence also the same death rate). In this case, the individual 
lineages are all equivalent, we hence need consider only one of them. There are 
two possibilities: either this particular lineage will die out, or it will fluctuate 
large enough that all the others will die out: i.e. it will reach N after some time: 
fixation of this lineage. For n << N, the dynamics are similar to the case we 
have already studied: the probability of surviving until a time t is about l / t ,  
and the typical population if it does survive is of order t. This should be valid 

until n ~ (N/2)  which will occur with probability of order 1/N and in time 
t = O(N). Once n = N/2  it has, by symmetry, a fifty percent chance of fixing. 
Thus we expect the probability of fixation is of order 1 /N and, if it does fix, this 
will take a time of order N. 

A simple argument shows that the fixation probability is exactly 1/N: in the 
neutral case, each of the N original individuals has an equal chance of fixing; 
since only one can fix, the probability of a particular one doing so is 1/N. This 
immediately implies that if the initial mutant population is no, the probability it 
fixes is no/N. Unless N - no is much less than N - -  i.e. that the wild-type 
population is a small minority the average time to fixation will be of order 

N. If N - no is small, then the typical time to fixation will be of order N - no. 
But the average fixation time in this regime is more subtle. It is equivalent to the 
average time to extinction of an initially small mutant population, given that it 

goes extinct, which it is very likely to do. Since the probability of going extinct in 

a time interval dt is dt no/t 2 for t >> 1/no, the mean time to extinction would be 
infinite but for the upper bound on n. Cutting off the integral over t at t = O(N) 
(corresponding to n ~ N) yields a conditional mean extinction time of no In N. 
Thus the conditional mean fixation time for N - no << N is (N - no)In N 
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by the same argument. Note that results for mean fixation times can be found 
exactly from a recursion relation that connects different values of no, without 
fully analyzing the dynamics. But, as is becoming a pattern, the average fixation 
time is often not a very useful characterization of the behavior. Thus one learns 
rather less from these exact results than from the heuristic arguments! 

We now consider a mutant population that has a small selective advantage, 
s, over the wild-type: i.e. s is its differential growth rate per generation of the 
wild-type, s = (b - B ) / B .  If s << l / N ,  the mean growth will be swamped 
by the fluctuations and the behavior is essentially that of the neutral case. But 
for s >> l / N ,  the selection is strong enough that a sufficiently large mutant 
population will rise to fixation: this is called a selective sweep. But with a single 
individual initially, the mutant population is likely to die out. Yet with probability 
s It will reach a size of order 1/s and become established. If it does become 
established, say in a time rest, then it will grow roughly deterministically as 

n , ~  les(t-rest) (2.26) 
S 

until it becomes large enough to become a majority of the population: this will 
1 In Ns,  the sweep time (although it will take twice as long for take a time, rsw ~ s 

the full sweep to when the wild-type population disappears completely). After 
the mutant population has reached N/2 ,  the wild-type population will decrease 
exponentially with N - n  "~ e -st until it reaches of order 1/s and fluctuations take 
over to drive it to extinction a time of order 1/s later. In the intermediate regime 
the dynamics is close to deterministic with the "logistic" form n ,~ ve st/[1 + 
ve st~N] with, in the case of a single individual at time zero, the appropriate 
v ,~ e -srest/S. It is convenient to define rest in terms of the population in the 
deterministic regime pretending that it had been deterministic back to a time 
rest at which it was 1 Is. The fluctuations at early times, plus the relatively weak 
fluctuations for times after rest, can then all be incorporated into rest which is thus 
a stochastic quantity with a distribution of values of order 1 Is. The advantages 
of speaking in term of a stochastic rest is that this correctly matches together 
the fluctuation regime for small n with the deterministic regime in which the 
fluctuations are negligible. 

The analysis we have sketched here, in particular the use of rest, is an example 
of a matched asymptotic expansion in which the existence of a small parame- 
ter, here 1INs ,  enables different regimes to be handled separately and matched 
together. Here the regimes are n << N for which the non-linearities from the de- 
pendence of the growth rate on n can be ignored, and n >> 1/s for which the fluc- 
tuations can be ignored. Understanding the scales involved ~ e.g. here the time 
scale 1/s in the small n regime ~ and being able to separate the regimes is es- 
sential for understanding more complicated situations such as those we consider 
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later. If the regimes and scales are understood, then for many purposes, cruder 
methods of matching are sufficient. In this context one could pretend that there 
is a strict separation of regimes: n < 1/s with neutral drift only, 1/s < n < N / 2  

with deterministic exponential growth of n, and N / 2  < n < N with determin- 
istic exponential decay of N - n. The only things one would really miss are 
numerical factors of order unity. But since in biology all equations are wrong 
(in contrast to what is often pretended in physics!), such errors are likely to be 
less significant than those we have made in writing down the model (e.g. the 
particular form of the stochastic birth and death processes). 

Before proceeding, we briefly consider the case of a deleterious mutant with 
s = - 6  negative. In this case, the dynamics is stochastic until a time of order 
1/6 and the chances of surviving that long are of order 6. After that, even the 
lucky survivors, which will have reached population sizes of order 1/6, will tend 
to die out, with the probability of survival decaying exponentially at later times. 
We shall need these results when we consider deleterious intermediaries. 

2.8. Mutation and selection 

We now turn to the combination of mutation and selection. The simplest situation 
is to start with a single population of size N which mutates at rate m per genera- 
tion to a fitter mutant population, n, with selective advantage s which competes 
with the original population so as to keep the total population size fixed at N. 
This is just the situation analyzed above with the addition of the mutations. We 
focus on the case of s small but N large enough that N s  >> 1. 

There are several important time scales. The first is the growth time: 1/s. The 
second is the time to drift from a single individual to n ~ 1/s: this is also of 

_ 1 In N s  which is substantially order 1/s.  The third is the sweep time: rsw 
longer. The fourth is the typical time between mutations: 1 / (Nm)  which for now 
we will assume is long. But there is a fifth, less obvious, time scale which is more 
important: the time for the mutant population to become established. The basic 
process is simple. Each new mutant has a probability of order s of surviving drift. 
Eventually one of these will definitely become established. As the establishment 
probability is ~ ~ s, of order 1/s new mutants are needed for one to establish and 
eventually one will. The stochastic establishment time is thus rest ~ 1 / ( N m s )  

which is much longer than 1/s if N m  << 1. Therefore when the mutations are 
limiting, rsw << Zest and the stochastic establishment dominates the total time 
until the mutant population fixes. 

If we tried to ignore the constant total population constraint m which should 
be alright at short t i m e s , -  then the average mutant population would be 

Nm 
(n) ~ - -  [e st - 1]. (2.27) 

S 
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1 In N m  but this is not  one If N m  is small, (n) becomes of order 1/s at a time s m 
of the characteristic time scales. How does this happen? Consider the distribution 
of establishment times. As these are typically of order 1/Nms, define a stochastic 
variable 13 _-- Nmsres t  which is typically of order unity. After establishment, the 
mutant population is 

1 st-Srest 1 st-B/Nm,_.  n ~ - e  = - e  e . ~z.zo) 
S S 

For atypically small 13, the probability density ,Oest(fl) ~ 1 since the establish- 
ment is effectively a Poisson process with rate N m s .  Thus (e -~ /Nm)  ~ N m  

being dominated by anomalously small 13 = O ( N m )  << 1. For N m  << 1, we see 
that the average reflects very atypical instances.. 

If the overall mutation production rate, N m ,  is large, then (n) becomes 1/s 
when t ,~ 1 / ( N m s )  still the typical establishment time. In this regime, rest << rsw 
so that many mutant lineages become established before any sweeps to fixation. 
The dynamics is thus close to deterministic with the time to half-fixation of 

1 l n ( s / m )  as suggested by the deterministic approxima- the mutant population s 
tion. 

All the results we have discussed thus far are well known, although, as we 
have seen, the readily calculable quantities can be very misleading. Armed with 
some understanding and experience with heuristic arguments, we now turn to 
more interesting situations. 

3. Acquisition of multiple beneficial mutations 

In most environments there are likely to be many potentially beneficial mutations 
available and by acquiring multiple such mutations, the fitness can continue to 
increase. How fast does this happen? Surprisingly, even in the simplest possible 
model, this is not an easy question to answer and, in spite of much literature on 
the subject, the correct behavior has only been derived very recently m and then 
by statistical physicists. In order to make progress, the heuristic understandings 
of the simple situations we have already discussed are invaluable. 

The simplest model of multiple beneficial mutations is a staircase model: a 

fitness "landscape" that consists of a long regular staircase with each step repre- 
senting a single beneficial mutation that increases the fitness by the same small 
amount, s. The effects of the mutations are considered additive,  so that acquiring 
x of them increases the fitness, cp, by sx .  The competition is for total resources 
which keeps the total population fixed at N. The mean growth rate of the sub- 
population with x mutations is s[x - Y(t)] with 4~ = sY ( t )  the average fitness of 
the population at that time m not the average over all histories, but that of the 
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particular populations at time t: 2 (t) is thus a stochastic variable whose dynamics 
we are particularly interested in. Being physicists, we can consider the staircase 
to be infinitely long, with the beneficial mutations occurring at rate m and never 
being depleted. There are then just three parameters, N, m, and s. 

We are interested in the mean speed o f  evolution 

d 
v - -  - - ( ~ )  (3.1) 

dt 

assuming this exists and more generally in the dynamics of the fitness 
distribution within the population. How do these depend on the parameters? 
From the discussion of a single mutant population arising and fixing, and of the 
continuous n approximation discussed earlier, we can guess that with s small the 
parameters will enter in combinations such as N s  and N m .  

We will focus on the regime in which the there is strong selection 

1 
s >> (3.2) 

N 

and the mutation rate is small relative to the selection: 

m << s. (3.3) 

This is applicable in almost all contexts for single-celled organisms and for all 
but small populations of multicellular organisms: in very small populations, 
(Ns  < 1), drift can dominate over selection for weakly beneficial mutations. 
The analysis we outline here was done in collaboration with Michael Desai [12]. 
A different regime, m >> s, can obtain for viruses and for almost neutral mu- 
tations more generally; the staircase-model in this regime has been studied by 
Rouzine et al [ 13]. 

3.1. Determinist ic  approximation ? 

For very large population sizes, we can hope to use the deterministic approxima- 
tion. This is straightforward to analyze. Starting from a single population of size 
N at x - 0, the subpopulation with x mutations, nx, is found to be 

[b(t)]Xe-b(t) 
nx (t) = N (3.4) 

x! 

with mean number of mutations, 

m 
x ( t )  -- b(t)  = - - [e  st - 1] (3.5) 

s 
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so that the evolution speed is 

Vdet = mse st. (3.6) 

The evolution is thus exponentially accelerating in the deterministic approxima- 
tion. Concomitantly, the distribution is getting broader and broader with standard 
deviation of the fitness s~/-b(t). But we should be highly suspicious: from our 
earlier discussion of evolution from one fitness peak to a higher one via an in- 
tervening valley, we can guess that the dominant mutations that give rise to the 
population at a large x will arise from an exponentially - -  or smaller m popula- 
tion at x - 1. Thus near the "front" of the fitness distribution the discreteness of 
the individuals is crucial: again, (nx) is very misleading when it is less than unity. 
No matter how large N is, we will e v e n t u a l l y -  actually very quickly given the 
exponentially growing speed m run into this problem. 

Thus we are faced with a situation in which there is no well-defined speed 
in the limit of large N: everything must be controlled by fluctuations (except 
perhaps at early times, although even then the deterministic approximation is 
dangerous). 

3.2. Successional sweeps: modest population sizes 

To proceed, we first consider the simplest regime in which the population is not 
very large. We can then use results we have already obtained for mutations and 
selective sweeps. If the total mutation production rate, Nm,  is small, the dynam- 
ics is mutation limited. From an initially monoclonal population with x -- 0, (i.e. 
nx=o(t = O) = N),  mutations will occur to x = 1. After a stochastic establish- 
ment time, rest, of order 1 /Nms ,  one of the mutants will become established. It 
will then sweep to dominate the population in a time rsw ~ ln (Ns) / s .  If 

N m  << (3.7) 
I n N s '  

rsw ( (  rest SO that the establishment process will dominate the time for the pop- 
ulation to increase its mean fitness by s. Such a sweep is fast enough that it is 
unlikely there will be further mutations established, either from the original pop- 
ulation or from the new population with x = 1, until the sweep is essentially 

m 

complete and the mean fitness becomes 4~ ~ s. The process will then begin 
again with an establishment and sweep of an x - 2 mutant after which 4~ ~ 2s, 
etc.. In each round, the mutant offspring will succeed their parents: we thus call 
this process successional mutations. In this regime, the distribution of the sub- 
populations will usually be concentrated almost entirely at a single value of x. 
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But occasionally, in mid-sweep, it will be bimodal concentrated on two succes- 
sive values of x. The average speed of evolution in the successional mutations 
regime is given by 

S 2 (3 .8)  v ~ ~ N m s  
(rest) 

since the establishment is a approximately a Poisson process with rate Nms:  

i.e. the probability of an establishment in the interval (t, t + dt)  is simply 
dt N m s e  -umst .  [Note that more generally, as discussed earlier, the establish- 
ment probability of a single mutant will be cs rather than s with c depending on 
the birth and death processes. The result for the speed will thus in general be 
modified by a multiplicative factor of c.] 

3.3. Multiple mutations in large populations 

If the population is large enough that there are many new beneficial mutations 
each generation, N m  >> 1, then the behavior is very different. For such large 
populations the first establishment time is much less than the sweep time for a 
single mutant. This means that after establishment of the first mutant, but before 
it can sweep, there will be further establishments of other mutations from the 
original population. And, more importantly, there will be new mutations from the 
already fitter x = 1 population. These double mutants will be fitter than the single 
mutants and can out-compete them. But before they fix, they can themselves give 
rise to even-fitter triple mutants, etc. Eventually, one of the mutant populations 
will takeover and become the majority population. But by then there will already 
be mutants with several more mutations that are destined to fix. 

We make the Ansatz that there is a roughly steady state distribution of the 
populations {nx } around some mean value Y(t) which advances step by step at a 
mean speed v, with 5(t)  most of the time an integer, and n~t) ~ N dominating 
the population at time t. At any time, there will be a fittest mutant in the popu- 
lation, at some x = 5(t)  + q(t):  we define q as the lead of these fittest mutants. 
They are fitter than the average members of the population by q s and thus their 
population, once they have become established, will grow as e qst until the mean 
fitness of the population increases. We assume that the fitness advantage of each 
mutation is small enough that qs << 1. 

With small mutation rate, the lead population will become established and 
be growing exponentially before the next fitter mutants establish. We take time 
zero as the time at which the next-most fit population became established, and we 
label the populations by x - Y rather than x. For simplicity, consider the situation 
at which the mean fitness increases by s at the same time zero. Then we have for 
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some time interval, 

e(q-1)s t  
n q - 1  ,~ (3.9) 

qs 

(qs rather than (q - 1)s in the denominator because this population became es- 
tablished while it had lead qs). The rate of mutations into nq is mnq_l (t). As 
each new mutant has a chance qs of becoming established, we expect that one of 
them will become established when 

f0 mnq_l(t)dt  ~' ~ .  (3.10) 
qs 

Assuming this takes a time long compared to 1/qs, the integral is e (q-1)st/[q(q- 
1)s 2] which means that the time, rq, for establishment of the new lead population 
is 

1 
rq "~ ~ In(s/m). (3.11) 

( q -  1)s 

Indeed, because of the exponential increase in the rate of mutations, if no mutant 
has become established by rq one is very likely to be in another, smaller, time of 
1/(q - 1)s or so later. Thus the variations in rq are small compared to rq itself 
by a factor of 1 / ln(s /m):  we assume that s /m  is very large so that ln(s/m) is 
itself a relatively large parameter. 

A more detailed analysis shows that many additional similar mutant popula- 
tions will be established soon after the first. Although these start growing later 
and are each typically substantially smaller than the first-established, collectively 
they decrease the effective establishment time by about ln(q - 1) / (q - 1)s can- 
celing a factor of q - 1 that would have appeared inside the logarithm had we 
used the first establishment alone. In practice, such corrections of order unity are 
comparable to the errors we are making from the approximations, in particular 
by assuming ln(s/m) is large. In particular, changing the establishment proba- 
bility from qs to cqs to reflect different birth and death processes would result in 
similar small corrections. 

We have derived the time for the front of the distribution to advance one step. 
For consistency, this must also be the time in which the mean fitness advances by 
s. Thus 

s 
v ~ (3.12) 

(Z'q) 

in terms of the mean rq (although, as noted, rq does not vary much: it is typically 
close to its mean). 
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But we now need to find q. After the lead population has become established, 
it will grow essentially deterministically with mutations into it from less fit pop- 
ulations no longer playing a substantial role. Thus the lead population proceeds 
from establishment by mutation to growth by selection• Under the conditions as- 
sumed above that the mean £ advances by one around the same time as the front 
advances m i.e. the new lead becomes established m the (soon-to-be) second- 
fittest population grows at rate (q - 1)s for a time rq = s/v, after which £ 
advances and it grows more slowly at rate (q - 2)s for a further time interval 
s /v.  Its fitness advantage over the mean decreases step by step until it becomes 
the dominant population. This takes a total time 

ln(s/m) 
rsw ~ (q - 1)rq ~ - - ,  (3.13) 

s 

the steady-state sweep time for new mutations. During this time, the formerly- 
lead population has grown to a size that, for consistency, must be about N so 
that: 

1 e x p [ q ( q - 1 ) s 2 ] ~ N  (3.14) 
qs 2v 

yielding, after plugging in for rq, the lead 

2 ln(Ns) 
q ~ (3.15) 

ln(s/m) 

(ignoring the factor of q inside In Ns which is in any case comparable to other 
factors we are ignoring). 

The speed of evolution is obtained from the consistency condition that the lead 
population sweeps to become the dominant population of size N, yielding 

v ~ s 2 2 ln(Ns) - ln(s/m) 
• ( 3 . 1 6 )  lnZ(s/m) 

Several aspects of these results are important to note. Most dramatically, the de- 
pendence of v on N has gone from linear in the successional mutations regime to 
logarithmic at higher populations. Almost all the mutations that occur in the large 
populations are wasted: only those occurring near the front of the distribution - -  
on the already fittest multiple mutants are important, the others are destined 
to die out after being out-competed by the fitter ones. The primary role of the 
bulk of the population is to lower the mean fitness. Away from the front, muta- 
tions have little effects on the dynamics: selection completely dominates. Thus 
the steady state distribution and its speed are determined by the balance between 
mutations at the front and selection in the bulk of the distribution. This is why 
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the overall production rate of mutations, Nm, does not enter: m enters rather in 
the combination s /m and the behavior is only logarithmically dependent on the 
mutation rate. 

Because selection dominates most of the distribution, the evolution speed is 
very well approximated by the the variance of the fitness, the general result men- 
tioned earlier: 

v = ~ var[4~]. (3.17) 
dt 

But as we have seen, what really matters is the front of the distribution which is 
many standard deviations away from the mean: the variance is not a very useful 
characterization of the distribution. It is the balance between the mutational dy- 
namics at the front m a tiny fraction of the population m and selection in the bulk 
that determines both the steady state distribution (including the variance) and the 
speed. On the simple fitness staircase we are considering, the distribution of fit- 
ness is close to gaussian many standard deviations away from the mean, indeed, 
until the sub-populations are of order 1/qs. [Note that this is rather unusual: dis- 
tributions tend to be gaussian (if at all) only near their mean m the central in the 
"central limit theorem" m with tails of different forms.] 

The evolution of the population distribution is, of course, not really steady. 
But the nature of the dynamics at the front implies that it does not fluctuate much. 
A proper analysis of the fluctuations is rather complicated, but can be done along 
similar lines to the above heuristic analysis. [12] 

We briefly mention several minor caveats about the above results. Strictly 
speaking, Eq. (3.16) is only valid for particular values of, say, ln(Ns) for which 
the lead advances at the same time as the mean advances. In general, the de- 
pendence on q, and hence on the two logarithmic factors is more complicated. In 
addition, for very large N, v becomes comparable to s 2 and larger. In this regime, 
significant new establishments continue in the second-fittest population while es- 
tablishments of the new fittest population are occurring. The mean fitness in this 
regime advances more smoothly, and there are several sub-populations around Y 
that contribute to the total as the standard deviation of the distribution is larger 
than s. But Eq. (3.16) is a very good approximation for the whole regime with 
Nm >> 1. 

Crossover between regimes The multiple-mutations analysis is valid when 
Nm >> 1. The border of its validity, N ,~ 1/m, corresponds to q = 2: this 
is when the fittest, sweeping, population produces new mutants soon before it 
become the majority population. For not-much larger N, there thus appears a 
small population two steps above the mean. For smaller N, the condition for 
validity of the successional mutations regime is that Nm << ln(s/m). Between 
these regimes there is a crossover that is straightforward to work out. Especially 
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as this occurs only in a narrow range of N, we ignore this here and refer the 
reader to reference [12]. 

3.4. Beyond the staircase model 

The staircase model we have been discussing is very unrealistic. It has several 
key simplifications: first, that all beneficial mutations have the same fitness ad- 
vantage; second, that there are no deleterious mutations; third, that the effects of 
the beneficial mutations are additive; and fourth, that there is an infinite supply 
of beneficial mutations so that they are not depleted. But one of the advantages 
of starting with such a simple model is that additional effects can be added and 
understood one by one. We briefly discuss relaxing each of the assumptions and 
some of the additional features that can then occur. 

3.4.1. Distribution of beneficial mutations 
One could argue that when all mutations confer the same selective advantage and 
their effects are additive, a rough result for the speed could be guessed without 
any calculations" with important mutations acting only in the small front of the 
distribution where the populations are small, logarithmic dependences on popu- 
lation size and mutation rates could have been anticipated. As the basic scale of 
the speed is s 2, this suggests v will be equal to s 2 times logarithmic factors. But 
when there is a distribution of fitness increments, one can no longer make such 
an argument: what s would one use for the basic scale of the speed? 

In reality, different beneficial mutations will give rise to different increases in 
the fitness. If there are many possible such mutations, each individually with a 
very low rate, these can be modeled by a distribution of mutation rates" #(s)ds 
for mutations with fitness increments in the range (s, s + ds). As mutations of 
large effect are likely to be fewer in n u m b e r -  of if more complicated mutational 
processes (see later) are involved, would occur at much lower rates m we expect 
#(s)  to fall-off with increasing s. Which range of s is most important for the 
evolution? 

If the population size is sufficiently small that a mutation arises, becomes es- 
tablished, and fixes before others can become established, the evolution occurring 
via the one-by-one establishment of a succession of mutants with a distribution 
of strengths. Given an establishment probability of s and a fitness increment of 
s, the speed of evolution is 

f0 v ~ N s2#(s)ds (3.18) 

so that in this successional mutations regime it is the mean-square s that controls 
the behavior. 
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But when the population size is la rger- -  roughly when the total beneficial mu- 
tation production rate, N f ~  ix(s)ds, is large - -  then new mutants can establish 
before earlier ones fix. This can have large effects. For example, if a mutation, 
A, with sa becomes established, its population will grow exponentially. But if, 
before it takes over the population, another more beneficial mutation, B, occurs 
with s8 > sa, B can out-compete A even though it arose later. If this occurs, 
then the mutation A is wasted. This process is known as clonal interference be- 
tween the different mutant lineages. [14] As mutant populations with larger s 
grow exponentially faster than those with smaller s, this interference suggests 
that the evolution will be dominated by mutations with anomalously large s. But 
if s is too large, the mutations will be so rare that other smaller ones will arise 
and fix first. Thus there should be some dominant range of s not too large and 
not too small. Various authors have considered this effect and tried to estimate 
the dominant s and the resulting behavior. 

But there is a crucial complication: while mutation A may be out-competed 
by a stronger mutation B, the population with A could itself produce a muta- 
tion C: if sa + sC > ss ,  the double-mutant AC can out-compete B. Indeed, 
when clonal interference occurs, such double mutants will also: if the original 
population can produce many new further mutants before earlier ones fix, a mu- 
tant population can produce some double mutants before it fixes. Thus whenever 
clonal interference is important, multiple mutations are likely to be important as 
well. 

Analyzing the interplay between multiple-mutation and clonal interference is 
well beyond the scope of these lectures and is still only partially understood. 
But it can be shown that a simple approximation works rather well. For each s, 
acting alone, the speed, Vs, can be estimated from the constant-s model using an 
effective mutation rate 

ms ~ six(s). (3.19) 

Then Vs is maximized to find the most effective s" the strength g of these pre- 

dominant mutants gives 

v ~ max Vs = v g .  ( 3 . 2 0 )  
s 

This predominant mutants approximation turns out to be surprisingly good. As 
long as the distribution Ix(s) falls off sufficiently rapidly (faster than a simple ex- 
ponential), the predominant s is roughly independent of N for large N. Although 
the predominant mutants approximation suggests that a broad range around g is 
likely to contribute, it turns out that this is not the case: the important range of s 
around g is narrow compared to g. [12] But g does depend weakly on the over- 
all mutation rate. The simplest to consider is increasing the rates of all types 
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of mutations uniformly: i.e., multiplying #(s)  by a factor of g. This results in 
a decrease in g and a somewhat weaker dependence of v on g than in the sim- 
ple staircase model. But this is hard to distinguish from various other effects 
(noted below). Thus detailed predictions of the effects of increasing mutation 
rates are not robust. Yet the weak logarithmic dependence on the mutation rate 
in the multiple mutations regime is robust, and is in striking contrast to the linear 
dependence in the simple successional mutations regime. 

3.4.2. Deleterious mutations and optimal mutation rate 

Most mutations are not beneficial: far more are deleterious. Thus the distribu- 
tion of mutation rates, #(s),  should have most of its weight at negative s. In 
the absence of beneficial mutations there will be an equilibrium distribution of 
deleterious mutations present in the population: as discussed earlier, the deter- 
ministic approximation is usually good in this case. When beneficial mutations 
are present and there is continual evolution, the deleterious mutations still play a 
role, in particular altering the shape of the fitness distribution and slowing down 
the evolution somewhat. These effects are small unless the deleterious mutation 
rate is rather large. But if it is large, the mean fitness can actually decline. This 
phenomena, known as Muller's ratchet, occurs if the fittest genome in the popula- 
tion disappears because of deleterious mutations, then the next fittest, and so on. 
In this situation, even without beneficial mutations, the deterministic approxima- 
tion fails and fluctuations - -  most crucially of the fittest remaining population 
dominate. 

We thus see that there are two competing effects of increasing the overall mu- 
tation rate: more beneficial mutations increases the speed of evolution but more 
deleterious mutations decreases the speed. This raises an important general ques- 
tion: what is the optimal overall mutation rate? It is not at all clear how to frame 
this question in any general situation. But in the specific context of continual 
evolution with a distribution of beneficial and deleterious mutations whose ef- 
fects are additive, it can be addressed. Specifically: if the overall mutation rate is 
increased by a factor of g, by # (s) --~ g#  (s), the speed of evolution changes. For 
small g, v increases with g - -  first linearly, then logarithmically. But for large 
enough g, the deleterious mutations start to dominate and v decreases. [ 13] This 
implies that there is an optimum g which depends on the population size and the 
distribution #(s).  

3.4.3. Interactions between mutations 

The effects of different mutations are generally not additive. Specifically: the 
selective advantages (or losses) of a mutation A, a mutation B and the double 
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mutant A B are not simply related: 

SAB ~ SA -~- SB. (3.21) 

Such interactions between the effects of mutations is known as epistasis. It surely 
plays crucial roles for long term e v o l u t i o n -  including speciation via of sepa- 
rated sexual populations. But more simply, in asexual populations, interactions 
between mutations would appear to invalidate the scenario for the acquisition 
of multiple beneficial mutations that we have been analyzing. One effect of in- 
teractions is conditionally beneficial (or deleterious) mutations for which a first 
beneficial mutation, A, changes whether or not a second mutation B is beneficial, 
or how beneficial it is. But as long as SA~ > SA, the second mutation can add 
to the first, whether or not it would have been beneficial on its own. Similarly, 
mutation A could eliminate the potential of an otherwise-beneficial mutation B. 
An important example of this is mutations that are in some sense in the same 
class: if any of a number of different mutations results in the same phenotypic 
changes with a second mutation in the same class giving no further effect, then 
this class of mutations can be considered as one type of mutation with a rate that 
is the total rate of all the mutations in the class. 

How do these various forms of epistasis affect the dynamics of asexual evo- 
lution via acquisition of multiple beneficial mutations ? What is needed for the 
scenario we have analyzed to obtain is not that the effects of mutations are ac- 
tually additive. The crucial feature is that there are a large number of beneficial 
mutations always available with the distribution of their selective advantages, 
/z(s), roughly independent of earlier mutations - -  even though which mutations 
are available depends on the past history. If this is the case, then the scenario 
we have analyzed is a good approximation to the dynamics and our quantitative 
results should be applicable. 

But there are other effects of interactions between mutations that do not play a 
role in the uphill climbs we have discussed but could nevertheless be important: 
deleterious intermediaries. For example, if SA and s8 are both negative, but SAB 
is positive: two mutations are then needed to produce the beneficial combination 
with the first step downhill in fitness. As this requires two mutations, for any 
particular such two-hit process, the rate will be very small. But a crucial question 
then arises: how many such potentially beneficial two-hit processes are there 
relative to the number of beneficial single mutations? And how small are the 
rates? We return to these questions later. 

3.4.4. Depletion of beneficial mutations 
In a constant environment with only the simplest genome-independent competi- 
tion which does not change as the organisms evolve, one would expect there to be 



Evolutionary dynamics 433 

locally optimal genomes whose fitness cannot be increased by single mutations 
i.e., fitness peaks. If such a peak is reached, there will be no more beneficial 

mutations a v a i l a b l e -  except more complicated processes with deleterious inter- 
mediaries such as the two-hit process discussed above. Before a peak is reached, 
the supply of beneficial mutations is likely to decrease and the rate of increase 
of the fitness slow down. If the effects of beneficial mutations are additive, they 
will simply be depleted, although how long this takes depends on whether there 
are a modest number of available beneficial mutations - -  or classes of such mu- 
tations - -  with relatively high rates, or many more available mutations but each 
with much lower rates. With interactions between mutations the situation is more 
complicated: if on average each beneficial mutation acquired enables one other 
to become available, the evolution can c o n t i n u e -  unless an unlucky route that 
ends in a local fitness maximum is taken. And if two-hit processes with delete- 
rious intermediaries can occur, the chances of becoming stuck at a local fitness 
maximum is far lower. Understanding the possible behaviors even with a con- 
stant environment requires far more knowledge of local fitness landscapes. And 
these depend on many aspects of the biological architecture as well as particulars 
of the past history and the type of selective pressures in the current environment. 

3.5. Experiments on the speed of asexual evolution 

To test the basic results of the theory outlined above for acquisition of multiple 
beneficial mutations, Michael Desai undertook experiments on asexual evolution 
of budding yeast in Andrew Murrray's lab. [15] The goal was to investigate the 
dependence of the evolutionary dynamics on the mutation rate and population 
size. The environmental conditions used were low glucose in which the yeast 
divided about 70% as fast as in high glucose: these conditions should cause suf- 
ficiently broad stresses that many potentially beneficial mutations are available. 
To eliminate all but the simplest competition, the yeast were kept in exponential 
growth phase at low enough densities that interactions between them were not 
important. The selection was simple: at regular intervals all but a small fraction 
of the cells were discarded, so that lineages that divide faster yield a larger frac- 
tion after the next dilution: this is roughly equivalent to keeping a fixed effective 
population size, N (approximately the geometrical mean of the time-dependent 
population size). Three different population sizes, with N spanning a factor of 
2500, were used and two strains with different mutation rates, differing by about 
a factor of ten: the higher rate was a "mutator" strain which had one of its mu- 
tation repair mechanisms knocked out. After each of the populations evolved 
for some time, it was mixed in with a marked unevolved strain and the differ- 
ence between their fitnesses measured by direct competition. At the end of 500 
generations, some of the evolved populations were sampled and the fitnesses of 
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96 individuals from each measured to obtain the fitnesss distribution within the 
population. We will not reproduce the results here, but summarize some of the 
salient features. [ 15] 

Even in the largest population of mutators, there is no sign of depletion of the 
supply of beneficial mutations: the rate of increase, v, of the mean fitness stays 
roughly constant over the 500 generations. The dependence of the evolution 
speed on population size is far weaker than l i n e a r -  as would have been the case 
in the successional mutations r e g i m e -  and consistent with logarithmic in N. 
The dependence of v on the mutation rate is also much weaker than linear. These 
suggest that the multiple mutations scenario does indeed apply in this experimen- 
tal context. An important check on this is provided by the fitness distributions: 
in contrast to the usually-monoclonal, somefimes-bimodal behavior expected in 
the successional mutations regime, in the large populations the distributions have 
a single peak with a substantial width consistent with expectations. 

All of the data can be well-fitted by the simple staircase model with a single 
value of s - -  about 2% per mutation ~ and two values of beneficial mutation 
rate m differing by the expected factor of ten. With these parameters, the ex- 
pected lead of the largest mutator populations is about q = 4 so that quadruple 
mutants above the mean sweep t o g e t h e r -  far faster than individual 2% mu- 
tants could on their own. Deviations of the measured speeds from predictions 
are within the ranges expected from fluctuations. There is some excess width 
to the fitness distributions of the mutator populations which can reasonably be 
attributed to deleterious mutations ignored in the simple model. Other scenarios 
for the evolution, in particular by a series of small successional mutations or by 
one or two large ones, are ruled out (except perhaps by appealing to fortuitous 
circumstances). 

That the data appear to be described so well by the highly overly simplified 
staircase model is a pr ior i  surprising. But in light of the discussion above about 
distributions of beneficial mutations, it is reasonable to expect that there is a 
characteristic strength, g, of beneficial mutations that dominates the dynamics. 
If the probability of mutations with s > g falls off rapidly, then the continual 
evolution will happen via multiple mutations of the predominant size g with 
depending only weakly on In N. Some dependence of g on the overall mutation 
rate is expected, but with a factor of ten difference of mutation rates between the 
normal and mutator strain this probably has little effect beyond that predicted by 
the simple model with fixed s. In any case, as noted above, increasing the overall 
mutation rate also changes other aspects of the dynamics: the distribution #(s) 
will not be increased uniformly (different types of mutations are affected differ- 
ently by knocking out a particular mutation repair system); the relative likelihood 
of two-hit mutations increases; the depletion of some of the beneficial mutations 
speeds up; and deleterious mutations play a larger role. 



Evolutionary dynamics 435 

The quantitative agreement of the experiments on yeast evolution is satisfy- 
ing - -  but we must remember that the experiments were explicitly designed to 
test the simplest situation beyond acquisition of a single beneficial mutation. And 
one might argue that the results are biologically boring: Why should one care 
about many small changes in a mildly stressful non-interacting environment not 
that different from environments the organisms have experienced before? Such 
an attitude may be reasonable as far as understanding current biological function. 
But for understanding evolution, it is totally unreasonable: How can one even 
begin to understand the dynamics of interesting evolutionary processes without 
understanding the simplest? And if nothing really makes sense except in light of 
evolution .. .  

We now turn to other ~ and surely more interesting - -  aspects of evolutionary 
dynamics. But even to frame good questions, the insights from the simplest 
evolutionary processes is essential. 

4. Recombinat ion  and sex 

Sex, in the general sense of combining some of the DNA from two organisms, 
surely plays a crucial role in evolution. Almost all successful groups of multi- 
cellular organisms reproduce sexually m some always, others only occasionally. 
The long-term benefits of sex must thus outweigh the shorter term costs, includ- 
ing maintaining the complicated mechanisms for sexual reproduction and the 
"wasting" of reproductive effort by females when they produce males rather than 
reproducing parthenogenetically: sex requires producing more offspring to pass 
on their genetic material. [ 16] 

Bacteria, which reproduce asexually by division, nevertheless have various 
mechanisms for picking up DNA from other bacteria (and viruses). A well known 
b e n e f i t -  to the bacteria! - -  is acquisition of antibiotic resistance by acquiring 
a functional group of genes an "operon" from another bacterium that has 
evolved mechanisms for dealing with similar chemicals. [8] 

Many potential benefits of sex have been discussed in the literature for both 
single-cell and multi-cellular organisms. [16] But which are the dominant bene- 
fits in which circumstances is controversial and little understood. 

A concrete benefit of sex can occur in large populations with many potentially 
beneficial mutations available: the situation we have been analyzing. As we have 
seen, with purely asexual reproduction most mutations are wasted in large pop- 
ulations: only those in the already-fittest individuals tend to matter and the rate 
of evolution increases only logarithmically with the population size. With sex, 
the evolution rate could be much faster. An extreme model is instructive: in each 
generation assume all the genes (or even parts of genes) recombine randomly so 
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that an individual genome includes one of each gene but with the specific allele 
chosen independently from the pool of variants of that gene. If the effects of 
mutations are roughly additive, then - -  at least naively - -  each gene will evolve 
separately. The rate of change of the fitness would then be the sum of the rate 
of changes of the fitnesses of each gene and the overall speed of evolution would 
continue to be mutation limited. Thus v would grow linearly with the popula- 
tion size even when a large numbers of different mutations are simultaneously 
present in the population. This suggests an enormous advantage of sexual re- 
production in large populations. But what happens in more realistic models of 
recombination? 

Various types of recombination can be studied in the simple staircase model: 
a large supply of beneficial mutations each with the same fitness advantage and 
their combined effects additive. The diversity within the population now plays 
a crucial role: it is not sufficient to know how many individuals there are with a 
given number of mutations. As they can recombine to be in the same individual, 
one needs to know the distributions of the different specific mutations among the 
subpopulations. There have been various efforts to analyze some forms of recom- 
bination in this model. [17-19] But it is still far from understood. For example: 
with a fixed recombination rate, for very large populations is the evolution speed 
proportional to N, to a power of In N, or something in between? Indeed, is the 
linear dependence on N correct even in the extreme model? 

The applicability of the additive approximation for beneficial mutations is 
much more questionable when there is recombination. In the asexual case, the 
crucial feature is that the distribution of potentially beneficial mutations does not 
depend much on the past history: i.e., on which mutations have already been 
acquired. Thus while interactions between mutations are important, they are pri- 
marily so in a certain statistical sense: how the interactions affect the evolution of 
the distribution of available beneficial mutations. But as soon as there is recom- 
bination, the interaction between the specific mutations that have accumulated in 
two different individuals is crucial. In general, there are likely to be incompati- 
bilities. For example, if in lineage 1 there is a mutation B1 that was conditionally 
beneficial on an earlier beneficial mutation A1 (i.e. ss~ < 0, SA~ > 0, and 
SA18~ > SA~ and in lineage 2 mutation D2 is similarly conditionally beneficial 
on C2, then it is more likely than not that, e.g., the recombinations A 1 D2 and 
BIC2 are less beneficial or deleterious. Thus, in this case, sex breaks up benefi- 
cial combinations m one of its negative effects. Indeed, it is just such an effect 
that can be a source of speciation in separated populations: these can accumulate 
different mutations which are incompatible so that the populations can no longer 
productively mate. But for long term evolution, what matters most (as we have 
seen for large populations of asexuals) are the anomalously fit individuals. Thus 
the rare matings that produce individuals far fitter than average ~ for example 
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by combining different beneficial mutations even when their effects are simply 
a d d i t i v e -  can be the most important. 

In organisms such as yeast which can reproduce either sexually or asexually, 
sex can provide a valuable probe of asexual evolution, particularly the distri- 
butions of beneficial (and approximately neutral) mutations and interactions be- 
tween these. 

To even begin to understand the effects of sex requires far more knowledge 
of how multiple genetic changes together determine the phenome of organisms: 
again, this depends crucially on the biological architecture and past evolutionary 
history. We comment briefly on such issues - -  whose addressing requires going 
well beyond phenomenological theory - -  at the end of these lectures. 

5. Deleterious intermediaries and combinatoric possibilities 

So far, we have considered the evolutionary effects only of mutations that in- 
crease the fitness in the current environment. This corresponds to the conven- 
tional picture of asexual evolution by a series of uphill steps. But at least in large 
microbial populations, two-hit mutations that involve an intermediate downhill 
step can occur on reasonable time scales. Even if the intermediary is lethal so 
that the two mutations must happen the same generation, this can occur. For ex- 
ample, if the roughly 1015 bacteria in a human body divide every few days, even 
with point mutations rates as low as 10 -9 per cell division, in the lifetime of a sin- 
gle human host a large fraction of the possible simultaneous two-point mutations 
are likely to have occurred in the most common species of the human's bacterial 
ecology. But this is a drastic underestimate of the rates of double mutations. 

Consider a beneficial double mutation which increases the fitness by s, but 
with the intermediary deleterious with loss of fitness 3. We will refer to these 
as two-hit beneficial mutations even when the two mutations occur in different 
generations. If the mutation rate for the second mutation is #, then we need to 
estimate the probability that a first mutation to the deleterious intermediary gives 
rise to a second mutation that establishes. Since the fate of each first mutation 
is independent, this depends only on the probability, e, of a single intermediary 
mutant individual giving rise to an established favorable double mutant: e is thus 
the establishment probability for the double mutant which plays the role of the 
establishment probability, ~ - s, for a single beneficial mutation. 

First consider the neutral-intermediary case, g - 0. The lineage from a typical 
individual will die out in a few generations, so the probability that a mutation oc- 
curs and establishes from one of this lineage is of order #s. But with probability 
of order 1/r ,  the lineage will survive for more than r generations, and if it does, 
so, its population size, n(r) ,  will become of order r. The probability that such 
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a lineage gives rise to an established mutant is lzs f o  n( t )dt  "~ /zsr 2 until this 
becomes of order one: lineages that survive longer than r ~ 1/~/-fi~ are very 
likely to do so. Thus the probability that a single first mutant gives rise to an 
established beneficial double mutant is 

E ~ , # t z s  (5 .1)  

This establishment probability is dominated by the rare lucky intermediary that 
lasts for an anomalously long time. 

If the intermediary is weakly deleterious, then (as discussed earlier) it lineage 
is effectively neutral for times up to of order 1/8. Thus if ~ < qrfi-~ the neutral 
result applies. In one specific context, this condition on ~ thus provides a concrete 
answer to the question: How neutral does a mutation need to be to be "neutral"? 

The non-neutral regime obtains when 

> ~/-/z s. (5.2) 

The longest a deleterious lineage is likely to last is of order 1/6, in which case it 
will reach a population size of order 1/8 and the probability that such a lineage 
gives rise to an established second mutant is ~ lzs/6 2 << 1. Since this happens 
with probability of order ~, we conclude that 

/zs 
e ~ ~ .  (5.3) 

[In this regime, the process is loosely analogous to quantum mechanical tun- 
neling through an intermediate state with energy higher by 8.] Note that for 

~ ~ k -  this becomes the neutral result as it should. 
The establishment rate for a two-hit mutation in a population of size N with 

first mutation rate/ZA, second mutation rate/ZB, a least-deleterious intermediary 
mutant, A, with SA -- --SA, and selective advantage of the double mutant, SAB, 
is thus 

NlZAeAB "~ N~A min [ IzBSAB̀A , ~/lZBSAB] . (5.4) 

This result should obtain as long as the population size is large enough that the 
maximum intermediary population size needed for the above argument is << N: 
this is not a stringent condition, at worst requiting N >> 1/~/lZBSAB. 

For three-hit mutations, A BC, with two deleterious intermediaries, A and 
AB,  the above argument can be iterated using the establishment probability eBC 
for the a B C double-hit mutation from an A individual (in place of S B in the 
above), to obtain the establishment probability eABC. For the case with both 
intermediaries almost neutral ~ now requiring A to be extremely close to neutral 
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and the population sufficiently l a r g e -  the overall establishment rate of the triple 
mutant is 

1 
N#AEABC ~ N # A w / - ~ [ # C S A B C ]  -4 (5.5) 

while if the intermediaries are more deleterious: 

#A#B#CSABC 
N # A e A B C  ~ N . (5.6) 

6A~AB 

The above results for two-hit mutations were recently obtained from exact calcu- 
lations [20], but without the heuristic arguments that aid their understanding and 
are needed for more complicated situations. 

For a K-hit beneficial mutant with deleterious intermediaries of typical 
strength ~ that is not tiny, and mutation rates of order #,  the establishment rate is 
similarly 

1 ~ N s #  . (5.7) 
( r e s t )  

Note that this is just #s  times the average steady-state number in the population, 
n K-1, of the multiple mutant that gives rise to the beneficial mutant. 

The problem with the deterministic approximation for this process (discussed 
earlier) is now apparent. Because of the exponential growth as n K (t) ~ e s ( t - r e s t ) / s  

of the fitter final mutant once it is established at time rest, averaging n K (t) over 
the distribution of rest is dominated by extremely rare anomalously fast establish- 
ments for which rest << (rest). At such an establishment time which dominates 
the average, the actual n x is almost always zero, but in the extremely rare cases 
when it is non-zero, this quickly gives rise to a population that dominates the 
average and rises to be much larger than N while the average is still small and 
the chance of establishment still tiny. 

We have found that he rate for any particular multi-hit mutation is very low, 
even with weakly deleterious intermediaries. But this brings us to a crucial ques- 
tion: how many potentially beneficial K-hit mutations are there? For point muta- 
tions, in a genome of length G there are of order G K K-tuples. But surely most 
of these are unlikely to be beneficial. Nevertheless, it is reasonable to expect that 
the number of potentially beneficial K-hit processes grows exponentially in K, 
say as QK with Q a large number. This means that that the total rate for K-hit 
processes is proportional to 

a product of a large and a small number to a power. Whether the product Q m / 6  

is a large or a small number is one measure of whether the mutation rate should 
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be considered "large" or "small" in this environment. Loosely speaking, this 
determines whether the exploration of genome space in an evolving population 
is local or far-reaching: surely a crucial question. 

Even for single-point beneficial mutations in microbes, how many there are 
in a typical environment with broad stresses is not known although the ex- 
periments on yeast discussed above and other experiments on E. coli give some 
indications. About multi-hit possibilities, nothing is known. Phenomenological 
analysis is useful for raising such questions and considering their potential con- 
sequences. But, once again, one cannot even hope to answer them without far 
more understanding of the biology and of evolutionary histories. 

6. Beyond the simplest questions 

In these lectures we have focused exclusively on understanding evolutionary dy- 
namics when the mapping between the genome and phenome is given. And even 
that only in constant environments in which the fitness is a single quantity which 
depends on specific aspects of the phenome and is hence a function of only the 
organism's own genome. We have only considered the simplest interactions be- 
tween organisms: competition for total resources which implicitly also assumes 
no spatial structure of the populations. We have seen that even with these gross 
simplifications the evolutionary dynamics can be subtle. And, as soon as there is 
sexual recombination, very little is understood. 

We end by discussing briefly three general directions in which far more theory 
is needed. For all but the last, laboratory experiments and close interactions 
between theory and experiments are essential. 

6.1. Space, time and ecology 

Most theoretical studies of population dynamics focus on phenotypes with ge- 
netic variability assumed. This is already an enormously rich subject even if the 
physical environment is constant. But once mutational processes are included, 
very little is understood. 

Temporal variations of environments are surely crucial for long term evolu- 
tion: the many different "tasks" organisms f a c e -  as individuals during their 
lifetimes and as populations on longer time scales m mean that their "fitness" is 
a poor concept. One has to, at a minimum, consider multiple aspects of fitness: 
most simply, fitnesses in different contexts. As far as one type of organism is 
concerned, time-dependence of the physical environment and of the biological 
environment are similar (although the stresses they cause may be very different). 
And once genetic changes are considered, little is known: even with only two dis- 
tinct environments, the interplay between the time scales for the environmental 
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variations and the genetic changes on evolutionary dynamics is only beginning to 
be explored. Of course, organisms feed back and change their own environments. 
Once there are several types of organisms, this gives rise to ecologies. 

Simple ecological interactions between organisms which depend on the species 
or strains involved can give rise to stable coexistence, to oscillations, and to chaos 
(studies of these phenomena by Robert May and others played an important role 
in the developments of understanding of chaotic dynamics). The interplay be- 
tween these effects and genetic changes i.e. the evolution of simple ecolo- 
gies - -  has been little explored and is a ripe for both experiments - -  some un- 
d e r w a y -  and theory. 

Another essential complication is spatial variation and mobility of popula- 
tions. Even in the simplest models with organisms that are phenotypically iden- 
tical but differ by some neutral mutations (most commonly, mutations in pro- 
tein coding regions that do not change the amino acids because of the redun- 
dancies in the three-nucleotide to amino-acid genetic code), the spatial dynam- 
ics of populations is interesting and subtle. In recent years, such neutral ge- 
netic differences have been used to track human migrations. But even some 
of the simplest questions in the simplest models with stochastic spatial motion 
are not yet answered. Again, once genetic changes occur, additional complica- 
tions arise. And of course, phenotypic variability brings in the full richness of 
evolution. 

Even within the simplest model of acquisition of beneficial mutations that we 
have discussed, the interplay between sexual recombination and spatial variation 
is essential to understand. When mating is within separate fractions of the popu- 
lation on short time scales but there is mixing of the populations on longer time 
scales, the evolution can be very different than in fully mixed populations. And, 
of course with interactions between mutations... 

6.2. Biological architecture 

To even begin to address questions about how interactions between genetic 
changes combine to give phenotypic changes, one needs to understand many 
aspects of biological organization of cells and organisms. 

There are two extreme caricatures of the architecture and functioning of a 
cell. One is that each protein (and its regulation) has a well defined function or 
functions and that these are grouped into modules which are themselves linked 
together to perform higher level functions, etc. With this as a paradigm, molec- 
ular and cell biology (aided recently by genomics) have established many con- 
nections between genes (and gene regulation) and phenotypic traits. But these 
successes have given rise to a bias towards thinking of evolutionary processes in 
too restrictive terms. 
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The opposite extreme is a holistic network of multiple interactions between 
proteins and other components. If this were the structure, changes of almost 
any part would affect much of the rest ~ and therefore multiple aspects of cell 
behavior. This scenario is closer to the macroscopic paradigm of evolution via 
selection on quantitative traits that are affected by many genes. In this paradigm, 
most genetic changes have side-effects ~ pleiotropy. And microscopically many 
genes have multiple functions at present, different functions in the past, and, 
potentially, new functions in the future. 

These caricatures represent very different views of genotype to phenotype 
mappings. How does the extent to which each of these is true affect evolution- 
ary p o t e n t i a l -  the evolvability? And how does it affect evolutionary dynamics? 
Conversely, how does evolutionary history affect the extent to which these carica- 
tures represent reality? Even rough answers to these are needed to address some 
of the questions we have raised earlier about interactions between mutations 
most crucially impacts of changes on each other and thus the combinatoric pos- 
sibilities. 

An advantage of modular architecture is that changes in one module are less 
likely to result in deleterious effects on others and thus incompatibilities between 
different beneficial mutations. But the network picture suggests enormously 
more combinatorial possibilities of changes, even if few of these are benefi- 
cial. Laboratory evolution experiments together with genetic methods and re- 
sequencing to track down changes are just beginning to start addressing these 
questions: for now in a small number of specific contexts, but in the future po- 
tentially in a wide enough spectrum of evolutionary contexts that general lessons 
can be learned. Better theoretical understanding of the evolutionary dynamics is 
needed both to design and to interpret such experiments. And such experiments 
will enable more useful general modeling and analysis. 

6.3. Abstract models 

To develop u n d e r s t a n d i n g -  qualitative and quantitative of broad issues in 
evolutionary dynamics, abstract modeling is also needed. Scenarios can be stud- 
ied in toy models that are crude caricatures of a few potentially important fea- 
tures. And general issues of dependence of key quantitative parameters m e.g. 
population and genome sizes m can be analyzed. 

As discussed in the introduction, to many m from Darwin on m the biggest 
puzzle in evolution is the evolution of complex functions. But to even begin to 
think about how this occurs so ~ seemingly to many ~ fast, one needs some 
quantification of degree of complexity and of how fast is "fast". 

Independent of their motivations for doing so, some advocates of "intelligent 
design" as an "alternative" to evolution have tried to introduce notions and ques- 
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tions that should be taken far more seriously than they have been. In particular, 
some have focused on the apparent "irreducible complexity" of certain biological 
f u n c t i o n s -  loosely, how many components and interactions these need to func- 
tion at all. Whatever the legitimate criticisms of the examples they have chosen 
(and the lack of understanding of biology these might represent) the general issue 
cannot be waved away. This is not an issue of marginal improvements of existing 
functions, but of the evolution of "new" - -  whatever that means - -  functions. It 
is surely true that even many of the simple functions that cells perform could not 
be evolved by a series of purely beneficial mutations or other genetic changes in 
their current biological context. Perhaps they could occur by a route that also 
changes many other functions of the cell. But to invoke such an explanation re- 
lies on murky assumptions about the biological architecture and dependence of 
fitness on multiple functions. And this is a major part of what one is trying to 
understand. In the real world, the evolution of complex functions surely relies 
crucially on past evolution of other functions. This issue is thus at the heart of 
evolvability. 

The state of understanding of the difficulty of evolving any even moderately 
complex processes is so poor that almost any progress on abstract models that 
include some of the essential aspects of evolution would be valuable. 

A long term goal is to formulate and address questions about how the diffi- 
culty of evolving functions depends on their complexity, and how this depends 
on the basic biological architecture crudely, modular or holistic network 
on recombination, and on quantitative parameters. For a class of functions that 
have increasing complexity loosely parametrized by some H, how does the dif- 
ficulty of evolving these grow with H? To make sense of this question, one first 
needs well defined classes of biological-like functions, such as pattern recog- 
nition, for which knowledge from computer science should be invaluable. For 
these, one then wants a definition of H - -  such as the minimum number of com- 
ponents needed, although this may not be a good measure. And one has to con- 
sider definite classes of architectures and types of mutational or recombinational 
processes. An obvious measure of difficulty, D, is the total number of "cell di- 
visions", N T, needed. However, as discussed in the introduction, it is not even 
clear that this is the most relevant combination of population parameters: indeed, 
the analysis of the staircase model and ensuing discussion suggests it is not. If 
the difficulty, D, was proportional to a power of H, highly complex functions 
could evolve readily. But the naive expectation is that D grows exponentially 
with H. This would be expected if all H components were needed for increased 
fitness and the probability of these arising were the product of H small factors 
(as in the estimate of rates of K-hit processes). If this were the case, the largest 
evolvable H would be modest even with enormous N T. But high evolvability 
might mean that how D depends on H is intermediate between these behaviors. 
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This could only arise from the nature of the architecture and concomitant maps 
between genome and phenome that are the least unlikely to have evolved in an 
ensemble of environmental histories. 

The crucial issue here, as already arose in the simple processes that we con- 
sidered in these lectures, is extrapolation. For example: for many purposes, once 
the difficulty, D, of a problem grows faster than a power of its size - -  here H 

1 

whether D grows as e CH or as, say e cH~ does not much matter. But with 
N T ~ e 1°°, it matters a great deal. As emphasized earlier, this means that sim- 
ulations are of little use in the absence of a theoretical framework: extrapolation 
over a wide range of parameters is not possible. 

Progress in developing abstract models and in framing quantitative questions 
would be major steps forward conceptually and certainly advance our quantitative 
understanding. 

7. The state of the field 

If nothing else, I hope these lectures have made the case that there is a huge 
amount to be done to even begin to understand evolutionary dynamics. I would 
thus like to end with a comment on the state of the field. As this author, this 
school, and much of the audience are physicists, it will take the form of an anal- 
ogy with the field of physics. It is loose, but I think instructive. 

But first a quote from Richard Lenski from a review of the late great evolu- 
tionary biologist Ernst Mayr's last book: [21 ] 

"Mayr argues that the precise mathematics that underlie physics are not ap- 
plicable to biology, in which determinism, typological thinking, and reductionism 
have limited utility.... [H]e builds on this point by splitting biology into two dis- 
tinct domains, functional and historical. While functional biology may fit within 
a framework similar to that of physics, Mayr argues that the historical domain 
of biology-in essence, evolution-requires a different framework. My [Lenski's] 
own view is that evolutionary history, reflects dynamical processes (e.g., muta- 
tion and natural selection) that can be described mathematically and tested ex- 
perimentally (as indeed they often are), although evolving biological systems are 
more complicated than whatphysicists study. [Arguing for a] distinction between 
the functional and historical domains of biological understanding may reflect [a] 
limited interest in evolutionary dynamics per se." 

If the basic laws of evolution are analogous to the laws of quantum mechanics, 
then the simplest evolutionary process (well described by population genetics) is 
like the hydrogen atom. The most complicated evolutionary processes directly 
observed are like simple molecules. And the statistical dynamics of multiple 



Evolutionary dynamics 445 

neutral mutations is analogous to ideal gasses. At the opposite extreme is most of 
evolutionary theory. This is much like geology: the constituents are known, many 
patterns are observed some qualifying as laws with varying degrees of 
understanding, and historical scenarios are well developed and can be predictive. 

But there are many levels between simple chemistry and geology. Most (al- 
though by no means all) of these are understood, each level in terms of lower 
levels: largely from condensed matter physics and geophysics. And these enable 
extrapolation over a huge range of length and time scales. 

In contrast, for evolutionary dynamics understanding of most of the intermedi- 
ate levels - -  or even what these are - -  is very limited. And the lack of quantitative 
understanding masks, I believe, severe limitations of the qualitative understand- 
ing. Genomic data is, perhaps, starting to provide the more complicated chem- 
istry. And the simple models of acquisition of multiple beneficial mutations are 
perhaps like ideal periodic solids or one-dimensional Ising models. But surely a 
major effort combining experiments, sequencing data, observations, and theory 
is needed. 

One can hope that in the near future far more interest will be sparked in evo- 
lutionary dynamics, per se. 

Evolution is - -  in contrast to popular perceptions in the United States - -  a fact. 
The evidence, reinforced by understanding of the basic laws, is overwhelming. 
But it will take far better understanding on multiple levels for evolution to become 
a fully fledged theory. 
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