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A central question in ecology is how to link processes that occur over

different scales. The daily interactions of individual organisms ultimately

determine community dynamics, population fluctuations and the function-

ing of entire ecosystems. Observations of these multiscale ecological

processes are constrained by various technological, biological or logistical

issues, and there are often vast discrepancies between the scale at which

observation is possible and the scale of the question of interest. Animal

movement is characterized by processes that act over multiple spatial and

temporal scales. Second-by-second decisions accumulate to produce

annual movement patterns. Individuals influence, and are influenced by,

collective movement decisions, which then govern the spatial distribution

of populations and the connectivity of meta-populations. While the

field of movement ecology is experiencing unprecedented growth in the

availability of movement data, there remain challenges in integrating

observations with questions of ecological interest. In this article, we present

the major challenges of addressing these issues within the context of the

Serengeti wildebeest migration, a keystone ecological phenomena that

crosses multiple scales of space, time and biological complexity.

This article is part of the theme issue ’Collective movement ecology’.
1. Introduction
The challenge of understanding processes that operate at multiple scales is

common to all scientific disciplines. Dynamics, such as decadal economic

cycles, or the progression of scientific discoveries, are the accumulation of fine-

scale events; daily struggles lead to results and findings, these results aggregate

to form a body of knowledge, this knowledge defines a discipline and so on.

Often, when studying natural or social systems a scale of observation is selected,

and the challenge then arises when attempting to relate what is observed at one

scale with the phenomena that emerge at another, and the feedback processes

that occur among scales.

The issue of scale is universal, and the field of ecology is no exception.

At the broadest level, ecosystems provide the services that are essential for

our survival [1], but these services are the result of the myriad direct and indirect

interactions among individual organisms. Understanding how ecosystem

services emerge from, and feedback to influence, micro-scale processes is a central

problem in ecology [2] and it is the key to understanding how best these services

can be protected. Schneider [3] identified the three components that define the

problem of scale in ecology; firstly, core ecological questions often concern

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2017.0012&domain=pdf&date_stamp=2018-03-26
http://dx.doi.org/10.1098/rstb/373/1746
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population-level, macro-scale processes; secondly, observa-

tions are constrained to relatively fine-scale measurements

and sampling; and third, when dealing with complex biolo-

gical systems, processes do not scale simply from one level of

description to another.

In the context of movement ecology, examples of large-scale

ecological questions concern the potential impacts of the cessa-

tion of a migration, the amount of connectivity required to

maintain a viable metapopulation, or the ecosystem impacts

of reductions in animal movement [4,5,6]. These questions are

addressed through monitoring and data collection on the move-

ment of individual animals and groups [7,8]. Connecting these

observations with population- or community-level processes is

an unresolved task [9–11] and one that in essence involves

extrapolating from second-by-second movements to annual

migration patterns, from resource selection and risk avoidance

to survival and fecundity rates [12], and from individual

behaviours to population dynamics and persistence.
Figure 1. The Serengeti wildebeest migration. The figure shows the annual
movements of 8 female wildebeest that were collared and monitored
between 1999 and 2001.

3:20170012
2. The Serengeti wildebeest migration
Wildebeest are an iconic example of a migratory species that

plays a dominant role in the ecology of the area it inhabits.

The annual migration of the blue wildebeest (Connochaetes
taurinus) covers the entire range of the Greater Serengeti ecosys-

tem, a round-trip that far exceeds the straight-line distance of

650 km, with data from GPS collars suggesting that the true

distance covered is over 1500 km [13]. Herds head south from

their dry season refuge in the Masai Mara (Kenya) as the short

rains begin in early November, and spend the wet season

(December–May) in the fertile southern short grass plains of

Tanzania, defined by the extent of the volcanic ash soils and

the mean annual precipitation. Calving season in February

coincides with this period of peak primary production. Calves

are highly precocial and will follow their mothers within

hours [14]. The wildebeest migration is constantly moving,

with females having an average daily displacement of 4.5

km [15], opting for high rainfall areas in the Western Corridor

before continuing northwest to the Masai Mara by July. The

dry season (August–November) is spent in the northern wood-

lands of the Serengeti National Park and the Masai Mara

National Reserve, before the cycle begins again (see figure 1).

This mass migration of animals is not only an awe-inspiring

visual spectacle but also plays a keystone role in the region’s

ecosystem. The migrants transport nutrients, consuming

around 4500 tonnes of grass per day, which is constantly

getting digested and relocated as they move around the ecosys-

tem [16], and are a source of food for multiple species of

predator and scavenger [14,17,6]. Movement enables the wild-

ebeest population to be much more abundant than expected

based on the environment [18]. In total, Serengeti wildebeest

are about twice the biomass of the next 12 most abundant

large mammals in the ecosystem combined [19]. By moving

among seasonal areas, migratory wildebeest increase their

access to food and therefore avoid being regulated by its avail-

ability at the local scale [20]. Furthermore, the natural rotational

grazing system inherent in the annual migration facilitates

compensatory growth in the grasses. The grasses grow more

rapidly after being grazed, thereby increasing the total

annual biomass of available forage [21]. Thirdly, by migrating

en masse the population avoids becoming regulated by preda-

tors either by swamping the local resident predator population
and thereby decreasing the per capita mortality rate, or by

improving their detection of predators [22].

Without the annual migratory cycle much of the region’s

biodiversity would decline [23], as the passage of the 1.3

million migrants affects virtually every other ecological inter-

action from below ground nutrient cycles, to insects and

avifauna abundance, to predator–prey interactions of resi-

dent herbivores and carnivores as well as the services this

ecosystem provisions for the communities around it [24].

Hence, movement is the force that drives the ecosystem

dynamics in the area and there would be fundamental

changes in the ecology and its services if it were to stop [25].

The migration is inherently a multiscale phenomenon.

Wildebeest aggregate in herds ranging from tens of individuals

to up to 400 000 [26]. The highly synchronous calving of Seren-

geti wildebeest could be an emergent property of the seasonal

environment where the cost of reproduction is high but only

energetically possible in certain areas and during short periods

of time [27], rather than be an adaptive response to predation.

Breeding synchrony ultimately leads to all reproductively

active females (about 450 000 animals) requiring the same

resources at the same time. This leads to competition between

individuals for limited resources in the local environment,

forcing them to search further afield for adequate forage

and water [19]. From a food-intake perspective, it would be

more advantageous for individuals to remain solitary as they

would be able to maximize their intake rate (i.e. the biomass

per bite). However, from a safety point of view solitary animals

are more exposed to predation; it is the balance between food

and security operating at different scales and at different

times that interact to form volatile fission–fusion dynamics

of the herd. Therefore, movement decisions of individuals

are influenced by multiple factors including physiology,

social interactions, environmental cues, resource availability,

memory and predation risk [15,27–29]. Disentangling these

competing, hierarchical drivers of movement is a substantial

task; however, it is a challenge that must be met in order to

develop the evidence-based policy required to protect vital

ecosystem services in the region.
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3. From individual to collective movement
(a) Connecting tracks with cues
We are now obtaining unprecedented levels of data on the

movement trajectories of animals, and moving towards collect-

ing lifetime tracks of individuals of certain species [7]. A

current major challenge is relating these data to the underlying

environmental and/or social drivers of movement [30]. With-

out connecting movement decisions with the instantaneous

conditions the animal was experiencing we are only able to

make crude inference on remotely collected data such as

response to season or large landscape-scale effects.

When trying to integrate animal movement data with cues

and drivers there are two issues of scale. The first is the ability

to collect data at a resolution that is relevant to the animal’s

decisions. Metrics relating to vegetation quality may be col-

lected from satellite imagery [31–33]; however, these data are

often at a far coarser scale than the movement trajectories

[7,11] and taken at different times. Normally, there is a trade-

off between increased spatial resolution and the amount of

time-delay between the movement and the environmental

observation [31]. This lack of temporal synchrony is not an

issue when considering long-lasting features of the environ-

ment such as trails [34] but when dealing with vegetation

that is growing rapidly and being consumed by large numbers

of herbivores it may be a significant factor. The second issue of

scale is that the individuals respond to their environment at

different and often unknown scales [35], therefore even if it

were possible to collect environmental data instantaneously,

at any resolution, it is a priori unknown what the correct

resolution to select should be; indeed, there probably is not a

single correct resolution. Wildebeest may be responding to

vegetation gradients [36] (i.e. the so-called green-wave hypoth-

esis [37,38]), intermediate-range cues such as rain storms

(discussed in [28]), risk factors relating to predation [15],

memory [29] or a combination of these factors.

In the future, greater satellite resolution and on-demand

coverage may help to resolve some of these issues, with dis-

ruptive technologies such as wide-area motion imagery

(WAMI) offering a potential step-change in our ability to

collect environmental data. Advances in on-board sensors

that accompany GPS collars also facilitate the collection of

social and environmental data [39–41].

The importance of traditional behavioural ecology in

this context should not be underestimated, and the use of

GPS collars has been criticized for their inability to provide

behavioural and social context [11]. While GPS collars and

satellite images are unrivalled in terms of sheer volume of

data, detailed on-the-ground observations still remain an

irreplaceable tool for understanding behaviour.

(b) Social context and interaction rules
While GPS collars on individual animals are providing tremen-

dous insight into individual behaviour they rarely reveal any

information about social interactions due to the difficulty

associated with tracking a large proportion of a group (aside

from some notable exceptions e.g. [34,42–44]). For ungulates

the role of social interactions has been examined in the situation

where collared animals have been released together [45], while

signatures of collective behaviour have been detected by ana-

lysing the temporal autocorrelation of trajectories at the same

spatial location [46,47]. For species such as wildebeest where
herds number in the thousands and group membership is

usually weakly cohesive and dynamic, GPS collars are not a

viable method to investigate social interactions and alternate

methods need to be found. This is imperative, as for social

species such as wildebeest, the behaviour of conspecifics

is probably as important as environmental cues. When herds

potentially span kilometers, social interactions represent a

mechanism of collective sensing that far exceeds the sensory

range of an individual [28,48,49].

If movement decisions of wildebeest are collective decisions

then studying individual behaviour will inevitably omit an

important aspect of the migration. The first stage in addressing

this deficit is creating a picture of interactions such as has been

achieved in the study of other species [50–53]. Increasingly,

aerial filming using platforms such as drones, blimps or bal-

loons offer a partial solution [8]. Figure 2 shows the relative

spatial distribution and orientation of near neighbours of

migrating wildebeest based on data collected from a UAV-

borne camera. These types of data provide an entirely different

insight into movement dynamics as compared to long-term

individual track data. Track lengths are of the order of seconds

or minutes, instead of years, while hundreds of individuals may

be simultaneously tracked for short amounts of time.

To fully leverage these novel data streams an approach is

required that integrates different multiscale data collection

techniques. To link long-term studies of individuals with

fine timescale observations from other platforms it is necess-

ary to identify collared animals within video images,

something that is now possible due to the data logging

capacity of modern aerial filming platforms [54].
(c) Conflict, mutual benefits and emergence
The interplay between the individual and the collective creates

a feedback mechanism that amplifies or inhibits behaviour.

In effect the social context is both driven by, and drives, the

behaviour of individuals. These feedbacks operate over

multiple time scales from the pressure to conform to directional

choices in order to avoid predation, to the evolutionary

dynamics of exploitation and information production in con-

texts such as vigilance [22] or navigation [55,56]. The net

effect of the individual on the collective behaviour of the

herd is probably a function of the behaviour of the initiator

and the internal state of the recipient, such that persistent be-

haviour is required to motivate a large lethargic group, but a

small inadvertent action can have large effects for an anxious

highly vigilant group.

The unpredictable relationship between the actions of indi-

viduals and the behaviour of the collective is the focus of

complex systems science. At the heart of this discipline is the

notion that interactions at lower levels give rise to properties at

the higher level, e.g. a collective phenomenon that might not

have been predicted from observations of individuals in iso-

lation [57]. For example, the lengthscale of the spatial structure

of grazing wave fronts of wildebeest far exceeds the perception

range of an individual. The structure is therefore an emergent

phenomenon and the product of both the individual-level

behaviour and the inter-individual interactions [58]. These con-

cepts mean that observations of individual movement only

provide a partial picture of the migration.

Without considering collective dynamics, observations

may appear counterintuitive. For example, for wildebeest the

correlation between movement speed and environment quality
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Figure 2. Fine-scale dynamics of wildebeest herds. Data are taken from
UAV-borne video. (a) Spatial distribution of near-neighbours relative to a
focal individual. Wildebeest display a well-defined inter-individual spacing
with greater density to the front and rear of the focal individual. (b) Relative
direction of neighbours. This is calculated as the dot product of neighbour
heading vector with the vector towards the focal individual. Higher values
indicate the neighbour is heading towards the focal individual, lower
values mean the neighbour is moving away. (c) Circular variance in heading
of near-neighbours. Variation in heading is greater either side of the focal
individual. (Plots b and c effectively show the first and second moments,
respectively, of the local distribution of neighbour headings.) Combined,
these data suggest that wildebeest tend to align and follow each other in
linear formations.
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switches from negative to positive as the density of grazers

increases. Hopcraft et al. [15] showed that for herds of wildebe-

est there was a positive relationship between speed and forage

quality, i.e. animals moved faster through regions of high-

quality resources rather than lingering to take advantage of a

good resource patch as one would expect. This is in contrast

to the classical view of resource selection considered at the indi-

vidual level where animals should tend towards encampment

in high-quality patches and rapidly pass through low-quality

patches. One interpretation of these counter-intuitive results
is that resources in high-quality patches are consumed more

rapidly by large groups, thereby forcing individuals to eat

rapidly and move on to the next patch in order to remain

close to the leading edge of the grazing front.

This example illustrates some of the challenges in revealing

the drivers of movement decisions that are influenced by multi-

scale environmental and social factors. Different drivers may

lead to similar observed behaviour [59] and novel statistical

methods [60] are required to distinguish socially driven move-

ments from movements driven by common external cues [30]

and for assessing social structure and the differing leadership

roles individuals adopt [61–63]. Identifying how the subtle

nuances and interactions between covariates can lead to totally

different responses remains one of the largest challenges in

the field.
4. Scaling across time and space
(a) Observation scale and hierarchical approaches
When we observe animal movement we necessarily do so at a

certain range of scales. Often there is no single correct scale [2]

at which to observe ecological phenomena. In some cases, a

scale is arbitrarily chosen, while in others it is imposed.

How data are collected will influence the phenomena that are

observed, the questions addressed, and thus, possibly, the

conclusions that are drawn [64].

As an example consider attaching a programmable GPS

collar to a wildebeest. The collar has a finite battery life and

so may produce a fixed number of reads at a controllable inter-

val. If we are interested in how the animal responds to local

cues, such as vegetation gradients we require an interval on

the order of seconds or minutes. If we want to know how the

animal responds to larger scale features we would select an

interval of a day or more. If our question relates to whether

the herds track seasonal variation we would require an interval

of weeks, and finally if we wish to know about site fidelity and

the annual return of individuals to particular areas we would

require monthly, or less frequent, fixtures extending over as

many years as possible. As we move from one end of the spec-

trum to another we sacrifice fine scale detail for temporal

range, breadth for depth. When a process has self-similarity

we may extrapolate straightforwardly from fine scale obser-

vations to longer distance movement properties [65];

however, for species such as wildebeest, different mechanisms

drive behaviour at different scales [35], and no universal

scaling law exists [66].

To understand these various multiscale and overlapping

drivers, it is necessary to integrate data from different sources.

Remote data from GPS collars can provide insight into long-

term movement dynamics, the relocation of collared animals

and repeated observations will reveal individual character-

istics, while observations from aerial platforms provide

information on fine scale second by second interactions.

Through an iterative process where observations at one scale

help to design observations at another in a hierarchical fashion,

a holistic picture of movement can be created.

(b) Decision points and behavioural states
Much of the difficulty in understanding the different scales of

movement arise from variability. Individuals within the herd

are not identical, so models that assume homogeneity fail to
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Figure 3. Landscape level movement patterns of the Serengeti wildebeest. GPS collar data taken from 55 wildebeest in the period 2005 – 2016. (a) Wildebeest
density over time. The heat map displays the regions where wildebeest are most concentrated throughout the year. (b) Individual directness. Plotted is the average
dot product of previous heading with current heading for each individual. High values indicate wildebeest are travelling more directly through these regions.
(c) Population-level coordination. The degree of alignment for all individuals in each region is plotted. This reveals the spatial locations where the population
as a whole tends to move in the same heading (South-East of the region).

Figure 4. Trail following behaviour of wildebeest. This image was taken from
an aerial survey of the wildebeest population undertaken in 2009.
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capture core details about individual variation in response to

certain factors, or apply the unique characteristics of a few

collared animals to the entire population. Similarly, it is not poss-

ible to make detailed observations over the course of a few hours

and extrapolate to movement over weeks or months, since

behavioural variation or behavioural modes [67], such as

‘foraging’ or ‘encamped’ [68], have to be considered. Switching

between these modes may be intermittent or occur multiple

times a day as in the case of wildebeest alternating between graz-

ing and marching bands. State-space models [69,70] and hidden

Markov models [68] have been used to detect these different

modes from individual trajectories. Research has shown these

modes exist and that switching between them depends on

environmental conditions [71,72]. While within these different

states, animals are still responding to local cues and one another,

the presence of these transition points indicate that there are

some periods of time that more significantly impact overall

movement patterns.

The first stage in an integrated multiscale approach is to

identify the presence of behavioural states from long-term

tracking data [60]. Covariates, such as landscape features or

temporal drivers, associated with the transition from one

behavioural state to another, may be inferred from higher

resolution positional and environmental data (see figure 3 for

data relating to the landscape level movements of the wilde-

beest herds). Finally, armed with information on the presence

and predictors of transitions, fine scale observations can be

made. In order to reveal the mechanisms underlying collective

decision-making [73], these targeted, fine-scale observations

require data collection methods akin to those associated with

laboratory-based studies of movement [51,52,74] to be

employed, from which detailed information about the inter-

actions between individuals and their environment can be

used to infer patterns of collective behaviour.
(c) Feedbacks between movement and the environment
While social feedbacks can rapidly reinforce fast time-scale

processes such as startle responses [75] or departure events

[76], the interaction between the environment and animal

movement patterns creates a longer time-scale feedback.
The constant migration of animals across a landscape creates

a system of trails that reinforce and even dictate movement

patterns. Trails are created through a process of positive

feedback [77] and once formed can have a significant effect

on the movement decisions of individuals [34,78].

Animal trails are found throughout the Serengeti and clearly

influence the movement decisions of wildebeest (see figure 4).

The tendency of wildebeest to follow these pathways pre-

sents both opportunities and difficulties when studying the

migration. The effect of trails on fine-scale behaviour is hard

to distinguish from social effects. Following a trail is an energy

efficient strategy so will encourage wildebeest to form travelling

lines, hence the spatial structure of herds, shown in figure 2, may

well be a result of maintaining cohesion and trail following.

When attempting to detect signatures of collective behaviour,

changes in orientation that are caused by meandering paths

may be interpreted as imitation. Care must be taken to include

landscape features into movement models at this scale [30].

Trail networks may also be interpreted as a form of cultural

memory [79]. The lifetime of these spatial patterns may well

extend beyond the lifespan of individual wildebeest and
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probably provide indicators of optimal routes for less experi-

enced individuals. The trails represent a form of stigmergy,

usually associated with social insects [80], as they represent

an indirect interaction between wildebeest that is mediated

by the environment. In fact, wildebeest have scent glands on

their hooves, and the continuous passage of individuals

along trails has been hypothesized to facilitate navigation [81]

as wildebeest are able to follow social cues without maintain-

ing visual contact. Explicit incorporation of trails has been

shown to improve the predictive power of movement models

in other species such as baboons [34], hence trails are probably

a significant factor that may be followed by individuals due to

efficiency savings or as a navigational aide [82].

Greater resolution satellite imagery combined with auto-

mated computer vision techniques now offer the potential

to remotely detect and monitor these trails, offering the possi-

bility to detect features of the migration even in the absence

of wildebeest.
 3:20170012
(d) Memory, fidelity and spatial scale
Memory is a ubiquitous component of animal movement,

influencing individual decision-making at various scales [83].

Memory’s relative effect on movement can be difficult to dis-

tinguish from those of other sensory cues such as local forage

quality, predation risk and conspecific attraction. In wild popu-

lations, inferences about memory are typically based on

observing where individuals and conspecifics move in the

past, and assuming that these locations (or prominent features

there within) represent a known spatial reference [34,84]. For

instance, relocation data suggest that a variety of organisms

exhibit strong loyalty to specific sites or routes at the individual

level (i.e. ‘site fidelity’) [85]. Site fidelity, however, is not necess-

arily memory-driven, and can arise because of either innate

navigational programs or because the set of available sites is

small. Stronger evidence that memory shapes recursive move-

ments comes from experimental work that involves relocations

or introductions to novel landscapes. Memory effects can be

separated from other navigational mechanisms, such as those

based on compass bearing or celestial orienteering [82].

Memory shapes movements in social animals in a number

of ways. Navigational success appears to improve when

groups are composed of older, more experienced individuals

(e.g. [86,87]), presumably because experienced animals transfer

information about sites or routes to inexperienced mem-

bers [79,88]. This learning also appears to enable adaptive

route changes in response to environmental change [89]. An

animal’s social context may determine whether memory-

based movements decisions are the most profitable or efficient

in the short term [90]. For instance, strong fidelity across years

is hypothesized to facilitate the use of the most efficient routes

or the sites with the most predictable resources [91]. However,

spatial fidelity can come at the cost of food intake or predator

avoidance when the quality of the site/route changes [92,93],

and for animals moving in large groups, site fidelity may rep-

resent a particularly costly strategy because local resources

become depleted quickly.

For migratory species, these conflicts play out across their

annual cycles. Migration in wildebeest (and other larger

herbivores) is classically described as an adaptive movement

strategy enabling individuals to exploit ephemeral resource

patches, such as those occurring after recent rainfall [15,28,

36,94]. The large group sizes extend wildebeest perceptual
ranges for locating high-quality forage up to 70 km [28].

However, even wildebeest exhibit spatial fidelity at annual

scales. In a multi-year mark-recapture study involving sev-

eral thousand individuals, adult wildebeest in the Tarangire

Ecosystem, Tanzania returned with high frequency to the

same wet season ranges each year (82–100%) [29]. Notably,

despite mixing within herds with wildebeest from other

ranges in the dry season, individuals tended to return to

the same wet season range each year [29]. Thus, fidelity

may play a stronger role in inter-annual movement decisions

than social-group membership in wildebeest. Whether this

same pattern holds in groups as large as the ones found

in Serengeti, where the population is 100-fold larger than

in Tarangire, remains to be tested.
5. Conclusion
The primary goals of movement ecology may be divided into

two broad categories: first, to understand the drivers and

mechanisms underlying patterns of movement; and second,

to evaluate the consequences of movement for individuals,

populations and communities [95,96]. The past several years

have seen a rapid increase in the data available for addressing

these questions. These data come from field observations and

sampling, radio telemetry and satellite tracking [7,97], camera

traps [98], aerial surveys and video footage [8]. In the context

of understanding the causes of movement and the mechanisms

underlying spatio-temporal movement patterns, research

efforts have focused on connecting movement trajectories

with local cues and drivers, examining temporal variation

and behavioural modes, and understanding the role of social

interactions and leadership. For broad-scale consequences of

animal movement, the concept of mobile links [99] has been

introduced and increasingly movement patterns are seen as

equalizing or stabilizing forces within ecosystems [6].

While there have been advances in data collection and analy-

sis methods, the next major challenge for movement ecology lies

in integrating data from different sources and developing com-

prehensive descriptions of movement that encompass both its

drivers and its consequences. Inevitably this is a problem of

scale. Data collection methods impose constraints on the

nature of the observations that can be made and controlled

experiments are often impossible. This means that extrapolation

must be made from one scale (the scale of observation) to

another (the scale of the phenomena of interest).

There remain gaps in our knowledge of both the drivers

and the consequences of the Serengeti wildebeest migration.

The synchronized mass movement of thousands of wildebeest

returning to the same locations on an annual basis raises ques-

tions about how this level of organization is achieved. On one

hand, the mass migration could be the result of animals

moving in response to an oscillating underlying abiotic gradi-

ent such as seasonal rainfall or soil fertility that determines the

cyclical availability of grass. However, behavioural obser-

vations illustrate wildebeest are unpredictable, responding to

environmental cues at multiple scales, and not operating as

independent migrants but instead part of a complex social

structure [14].

Efforts to disentangle the various drivers of the migration

are focused on increasing the number of individuals that are

monitored and gaining higher resolution data on environ-

mental covariates. As the number of GPS tracking collars
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deployed on wildebeest increases, a picture of individual and

temporal variation can be developed. Combining these data

with statistical models and inference techniques will reveal

the competing time-varying drivers that influence decisions.

To complement these individual-based data, observations

of collective behaviour are required. Aerial filming and com-

puter vision methods are now providing the tools needed to

collect and process these observations. Integrating these

studies of collective movement with individual tracking [54]

will allow us to detect which individuals are influencing

decisions [100] and to understand how wildebeest herds

collectively respond to their environments.

As in many studies of animal migration, the aim of under-

standing the Serengeti wildebeest migration is driven by the

significant impact it has on the local ecosystem. The wildebeest

affect every facet of the ecology in the region [6]. The migration

facilitates other species of herbivore through successional graz-

ing, migrants are transporters of disease, they impact

vegetation dynamics and fire regimes, and are vital prey for
carnivores [14,101]. Movement allows the population of wild-

ebeest to persist at high levels and this vast biomass has huge

impacts as it moves around the park [19]. In the Serengeti

region, as elsewhere, greater understanding of the mechanisms

that drive keystone ecological processes is vital due to

increased human activity [102] and the need to make informed

and effective management decisions [103,104].
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