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Transcriptome analyses have provided valuable insights into gene regula-
tion. However, transcriptome data do not capture post-transcriptional 
processes, such as protein turnover, and therefore do not provide a  
complete picture of the expression state1,2. Thus, to understand how  
biological systems function, there is a need to complement these  
transcript-based insights with quantitative protein information.

Recent developments in (MS)-based proteomics have enabled abso-
lute protein levels to be measured on a system-wide level in microbes3–5  
and mammalian cell lines4,6. However, because in-depth protein  
quantification requires extensive sample fractionation, proteome  
studies have so far been limited to a few samples, conditions3,7,8 or 
cellular compartments9,10. Post-translational modifications have also 
been broadly characterized in E. coli, but these too have been restricted 
to one or a few conditions and have relied on enrichment techniques  
to identify respective specific modification11–15. In contrast, studies 
that have investigated the E. coli proteome across multiple condi-
tions were limited in terms of protein coverage16,17, or with regards 
to absolute quantification12.

Here, we quantify proteins across 22 experimental conditions.  
By reducing sample fractionation to a few high-quality fractions and 
using high-resolution MS, we doubled sample throughput without 
compromising on proteome coverage. Using an efficient protein 
extraction method, we also obtained quantitative information on 
membrane and ribosomal proteins, which are notoriously difficult 
to extract quantitatively18. Overall, we determined protein abun-
dance levels for ~55% of the predicted E. coli genes (>2,300 proteins).  
This not only doubles the number of proteins absolutely quantified 
in E. coli3, but also provides to our knowledge the most comprehen-
sive, condition-dependent protein-abundance map for any organism 
to date. In addition, we identified 11 different types (3 novel types) 

of post-translational modifications including 318 novel ones, pre-
dominately Nα-acetylations and methylations, which have not been  
previously reported in E. coli. We also uncovered growth rate– 
dependent proteome rearrangements, providing fundamental insights 
in global resource allocation.

RESULTS
Experimental design
We grew E. coli BW25113 (ref. 19) under 22 different growth condi-
tions in biological triplicates. These conditions included (i) growth on 
minimal media with an excess of different carbon and energy sources, 
(ii) growth in glucose-limited chemostat cultures with varying growth 
rates, (iii) growth on glucose excess with different stress conditions, 
(iv) growth on complex medium, and (v) 1 and 3 d into stationary 
phase. Additionally, to enable use of the generated data also for other 
E. coli strains, we determined protein abundances under glucose 
and LB growth conditions also for two other frequently used strains; 
MG1655 (ref. 20) and NCM3722 (ref. 21).

Generation of condition-dependent proteome profiles
Quantitative proteome analyses were carried out using a combination  
of recently developed MS-based strategies4,5,22 and an efficient pro-
tein extraction method, which together allowed for system-wide 
accurate quantification of protein levels across a large number of con-
ditions (Fig. 1). First, aliquots of all samples taken from the different  
conditions were subjected to shotgun liquid chromatography (LC)-
MS analysis to identify as many peptides as possible and to determine  
their condition-dependent intensities by label-free quantification. 
To maximize the number of quantified proteins, we optimized 
protein extraction, sample prefractionation and LC parameters 
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(Supplementary Figs. 1–3) and combined the data of two independ-
ent large-scale LC-MS analyses using different samples and experi-
mental parameters (Supplementary Fig. 4).

Second, we accurately quantified a subset of identified proteins 
to establish a ‘calibration’ for the MS intensities determined for all 
identified proteins. Here, we selected 41 proteins, which we expected 
to be expressed at different abundances. Specifically, we selected the 
enzymes and iso-enzymes of the glycolytic pathway (including pro-
teins with hypothetical function), tricarboxylic acid cycle enzymes 
and a few other proteins (Supplementary Table 1). These proteins’ 
concentrations were determined in each sample using stable isotope 
dilution (SID) and selected reaction monitoring (SRM) LC-MS/MS 
analysis23,24 (Supplementary Tables 2 and 3). The concentration 
range of the 41 proteins covered more than four orders of magni-
tudes ranging from around 92,000 (Mdh, on acetate medium) to only 
2 (YbhA, 3 d into stationary phase) copies per cell.

To determine the concentrations of proteins that we did not quantify  
with synthetic peptides, we used summed precursor MS intensi-
ties originating from the respective protein, and a quantitative  
model established for each sample using the absolutely quantified 
proteins4,25. We observed good correlation (R2 > 0.8) and low median 
error rates (determined by bootstrapping5) between measured and 
estimated abundances being below 60% and 100% for the unfraction-
ated (data set 2) and OFFGEL electrophoresis (OGE)-fractionated 
(data set 1) samples, respectively (Supplementary Figs. 4 and 5).  
Finally, together with the cell numbers determined from flow  
cytometric analyses (Step 3) and condition-dependent cell volumes26, 
accurate protein abundances per cell and per cell volume were calcu-
lated (Supplementary Tables 4–6).

We determined absolute quantities for 2,359 proteins across all con-
ditions reflecting around 55% of the predicted open reading frames 
(ORFs) and >95% of the proteome mass27,28. The data set is an unbiased 
representation of the E. coli proteome—it includes very hydrophobic 

proteins—with highly reproducible and accurate protein concentra-
tion determined for 22 growth conditions (Supplementary Note 1, 
Supplementary Figs. 6–9 and Supplementary Tables 4–8). The high 
correlation coefficients of absolute protein levels observed with pre-
viously published small data sets comprising a few single conditions 
confirm the high quality of our data set (Supplementary Fig. 8).

To test the applicability of our data set to other E. coli strains, we 
determined absolute protein levels for two additional, commonly 
used E. coli strains (MG1655 and NCM3722) at two conditions and  
compared the levels with the data from BW25113 (Supplementary 
Fig. 10 and Supplementary Table 9). We found highly similar protein 
levels, with the exception of proteins of the flagella assembly apparatus 
that are particularly high in MG1655 (ref. 29). This indicates that the 
data acquired for BW25113 are to a significant extent also valid for 
other E. coli strains.

Growth rate-dependent changes in protein abundance
Seminal studies in bacterial physiology uncovered that the mass 
fractions of cellular macromolecules (i.e., protein, RNA, DNA) are a 
function of growth rate, irrespective of the composition of the growth 
medium30–32. It was further found that the amounts of ribosomal 
proteins increased relative to the total protein amount with increasing 
growth rate33,34. Recently, using E. coli strains subjected to gradual 
carbon and nitrogen limitation, as well as gradual ribosome inhibi-
tion by chloramphenicol, it was found that the proteome undergoes 
growth-rate and limitation-dependent rearrangements17.

We further explored this idea and investigated protein resource 
allocation across conditions. We found that only a few cellular  
processes—as defined by COG classification (Clusters of Orthologous 
Groups35,36; Supplementary Tables 10 and 11)—make up most 
of the proteome mass (Fig. 2a), with six (from a total of 21) COG  
categories comprising around 80% of the total proteome. Combining 
the masses of proteins assigned to each of the four main COG classes 
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and correlating the combined masses with growth rates (Fig. 2b and 
Supplementary Table 12), we found that the abundance of proteins 
of the COG class “metabolism” increased logarithmically with growth 
rate; the abundance of those involved with “cellular processes and 
signaling” and “information storage and processing” (containing, for 
example, ribosomal proteins) increased linearly; and the abundance 
of poorly characterized proteins stayed constant (Fig. 2b). Similar 
growth-rate dependent trends could be found in the 21 different COG  
categories (Fig. 2c–e and Supplementary Fig. 11). Thus, extending 
the study of Hwa and colleagues17 to a large range of different growth 
conditions, our data demonstrate that the abundance of many proc-
esses strongly correlates with growth rate.

However, we also noted that in some conditions the fraction of the 
proteins of certain metabolism-related COG categories deviated from 
the growth-rate correlation, suggesting an altered demand for pro-
teome resources. This was, for instance, the case when comparing con-
ditions where amino acids were present in or absent from the growth 
medium (Fig. 2c), or between conditions with respiratory versus  
fermentative metabolism (Fig. 2d). In the first case, the COG category 
of “amino acid transport and metabolism” was ~9% lower in the LB 
medium condition compared to the fastest growth condition without 
amino acids present. In the second case, on average about 10% of the  
protein mass was invested for energy generation on fermentative 
carbon sources (COG category “energy production and conver-
sion”), whereas substrates that largely rely on respiration invested 
15–30% of their total protein mass in energy regeneration (Fig. 2d). 
Increased allocation of protein resources in these metabolic processes  
was accompanied by lower allocation in proteins connected with 
“translation, ribosomal structure and biogenesis” (Fig. 2e). As it has 
been suggested that the amount of ribosomes determines the cellular 
growth rate37, these observations lead us to propose that the invest-
ments required for metabolic processes of amino acid biosynthesis or 
energy metabolism under specific conditions constrain the possible  
investments in ribosomes, and thus can be considered growth- 
limiting factors.

Role of transcriptional regulation in resource allocation
Next, we aimed to identify those cellular processes that rely on transcrip-
tional regulation for adaptation to different conditions. We determined 
the concentration variability of each detected protein across condi-
tions by calculating the coefficient of variation (CV). We found differ-
ent median variability in different COG categories (Supplementary  
Fig. 12). For instance, consistent with the fact that we determined the pro-
teome when cells grew on different carbon sources, proteins belonging to 
the COG categories “carbohydrate transport and metabolism” and “energy  

conversion and metabolism” were highly variable across conditions 
compared to the rest of the proteome. In contrast, proteins belonging  
to the COG category “transcription” exhibited significantly (P = 0.012) 
lower variability across conditions. In particular, the 90 reliably quanti-
fied transcription factors revealed significantly less variability across 
conditions than the rest of the proteome (Fig. 3a). Thus, proteins 
belonging to the COG category “transcription” may be subject to post-
translational regulation instead of transcriptional regulation.

Despite the mostly low variation across conditions for individual 
transcription factors, the overall range in copy numbers between tran-
scription factors was very large (from ~10 to >10,000 copies per cell). 
To test whether these differences are related to the number of the 
transcription factors’ binding sites on the chromosome, we determined 
the ratio between transcription factor copy number and the number of 
reported chromosomal binding sites (Fig. 3b). Although some extreme 
outliers exist (Fig. 3), we found that most transcription factors had 
only a median ratio around 10, with some of the global regulators, such 
as Cra, Fnr and Crp, having even lower ratios, between 1 and 2. As 
transcription factors also bind unspecifically to DNA38, which further 
reduces the number of free transcription factors, such low ratios make 
it unlikely that all available binding sites are actually occupied by the 
respective transcription factor at a given time point, which in turn 
may cause considerable competition between different binding sites 
for a relatively scarce transcription factor. Recently, it was found that 
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such competition is used to establish the hierarchy of co-utilization of 
sugars39, and the generally low ratio between transcription factor copy 
number and binding sites suggests that similar hierarchical regulation 
may extend to other transcriptional regulators.

We next investigated the extent to which the topology of the  
transcriptional regulatory network can explain the expression of 
proteins across conditions. Therefore, we calculated the pairwise 
Pearson correlation between all proteins and compared the correlation  
coefficients of co-activated/co-repressed proteins (i.e., proteins  
sharing at least one transcriptional repressor or activator; as reported 
in RegulonDB40) with those of the rest of the protein pairs (Fig. 3c).  
Here, across conditions, we found that co-transcribed proteins  
(i.e., proteins from the same operon) had a clear bias toward strong 
positive correlations. Co-transcribed protein pairs with weak cor-
relation had additional, nonoverlapping transcription units (Fig. 3c, 
gray dashed line). The strong bias for strong positive correlations  
in co-transcribed proteins suggests that differential post- 
transcriptional regulation of gene expression within operons plays 
a limited role in E. coli. In contrast, we found that co-activated/ 
co-repressed proteins (i.e., proteins that are regulated by the same 
transcription factors) show weak correlations. This finding suggests 
that in different conditions distinct subsets of a transcription factor’s  
targets are activated or repressed, which makes the topology of 
the transcriptional regulatory network a poor predictor of protein  
expression across conditions.

Distribution of protein mass between periplasm and cytoplasm
Next, we investigated the condition-specific localization of protein mass 
between different cellular compartments. 1,174 of the measured pro-
teins had a compartmental localization assigned, representing 76–83% 
of the total protein mass at the different conditions (Supplementary 
Table 13). Generally, we found that the protein mass fraction of the 
cytosolic proteins significantly (P < 0.0001) increased with growth rate 
(Fig. 4a), whereas correspondingly the mass fraction of periplasmic 
proteins significantly (P < 0.0001) decreased, even when considering 
geometric alterations resulting from increased cell volumes achieved at 
faster growth rates (Supplementary Fig. 13). In stationary phase condi-
tions, periplasmic proteins accounted for 15% of the expressed protein 
mass, whereas on LB medium, only 6%. On an absolute level, the mass 
of all periplasmic proteins per cell was greater in slowly growing E. coli 
cells (despite their smaller size) compared to their fast-growing coun-
terparts (Supplementary Table 14). Further, we found that the relative 
mass of proteins associated with the inner membrane increased, whereas 
the relative mass of proteins located at the outer membrane decreased 
during faster cell growth (Supplementary Table 14).

Taking these identified distributions of the protein mass together 
and assuming constant protein concentrations across cellular com-
partments suggested that the volume fractions between cytoplasm and 
periplasm change as a function of growth rate (Fig. 4b, upper panel), 
with the cytoplasm assuming higher, and the periplasm lower, volume 
fractions at high growth rates. To test this, we generated cryo-electron 
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between transcription factor copy number and corresponding number of chromosomal binding sites per cell.  
Transcription factors were sorted according to the number of reported binding sites (based on RegulonDB40).  
Transcription factor copy numbers were normalized for the number of proteins in the active transcription factor  
complex (i.e., considering eventual multimerization of the transcription factors). The number of chromosomal  
binding sites was adjusted to account for growth rate–dependent differences in DNA content (as described48). Small gray circles: transcription  
factor/binding site ratio for each condition. Large circles: median ratio across all conditions. Transcription factors are marked as repressors (red)  
or activators (blue) if more than 50% of their binding sites are reported as repressing or activating, respectively. Transcription factors with predominantly 
dual, or unknown, effect are marked in black. The number of distinct transcription factor binding sites in the chromosome is shown in brackets 
after transcription factor names. Note that HupA/B (HU complex) with a median ratio of >104 also play a histone-related role as part of the nucleoid 
complex49, and the observed high HupA/B copy numbers are likely reflecting HU’s role in the structural integrity of the chromosome. (c) Distribution of 
protein cross-correlations across conditions. Cross-correlation was calculated as pairwise Pearson correlation coefficient between proteins across all  
22 conditions. Distribution for proteins whose genes are targeted by at least one common repressor or activator are shown as red and blue line, 
respectively. Gray line: protein pairs, which share at least one transcription unit (= co-transcribed). Gray dashed line: fraction of co-transcribed protein 
pairs, which also have nonoverlapping transcription units (= partially co-transcribed). Black dashed line: cross-correlation of all detected protein pairs. 
**P < 0.05; ***P < 0.01.
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microscopy images of cells grown on LB medium and in stationary 
phase. We indeed found a significantly (P < 0.0001) reduced periplasmic  
space at the fast growth rate condition (Fig. 4b, lower panel, and 
Supplementary Fig. 14), consistent with the observed significant 
decrease in protein mass in the periplasmic space.

To investigate the growth rate–dependent distribution between 
cytoplasmic and periplasmic proteins, we focused on protein 
classes that constituted a large fraction of the periplasmic proteome.  
We found that periplasmic binding proteins with ABC transporter 
functions were highly enriched in the periplasm covering up to 
80% of the total protein mass of the periplasm. Notably, the mass 
of periplasmic ABC transporter binding proteins in the periplasm 
decreased with increasing growth rates, explaining a large part of 
the observed reduction of the protein mass in the periplasm in  
fast-growing cells (Fig. 4c). Focusing on stoichiometries between the 
periplasmic binding proteins and their membrane-bound counterparts,  
we found a high excess of periplasmic binding proteins compared 

to their ABC transporters of up to >100 fold at low growth rates  
(Supplementary Table 15) and we found that these stoichiometries 
(with some exceptions, Supplementary Table 16) decreased  
significantly (P < 0.0001) with increasing growth rates (Fig. 4d).

Thus, at lower growth rates cells apparently increase the abundance 
of the periplasmic proteins and binding proteins and express higher 
numbers of binding proteins as compared to the respective ABC 
transporters. Eventually, these measures allow cells to increase the 
efficiency of nutrient uptake in less favorable conditions.

Post-translational modifications
We performed a global and unrestricted protein modification search41,42 
to identify the most frequent post-translational modifications  
in our protein data set (Supplementary Fig. 15). We identified  
11 different types of modifications (Table 1 and Supplementary  
Table 17) and confirmed many known lysine acetylation and phospho-
rylation sites from previous studies focusing on single PTMs11,14,43. 
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Figure 4 Condition-dependent distribution of 
protein mass in different cellular compartments. 
(a) Mass fractions of proteins annotated as 
periplasmic (red) and cytoplasmic (blue) to 
total protein mass as a function of growth 
rate. Compartmental localization was done 
according to UniProt/gene ontology50. The 
trend lines (Lowess curves, dashed lines) are 
indicated. (b) Upper panel: volume fractions 
of different cell compartments at the 3-d 
stationary phase and LB growth condition as 
hypothesized on the basis of protein mass 
fraction assuming constant volumetric protein 
concentrations across conditions. Lower panel: 
cryo-electron microscopy analysis of E. coli 
cells grown to 3-d stationary phase after a 
glucose culture (left), or grown on LB medium 
(right) confirms this hypothesis. Scale bars, 
500 nm. (c) Distributions of the mass fractions 
of periplasmic ABC binding proteins to all 
annotated periplasmic proteins by growth rate. 
Notably, we discarded one extremely abundant 
protein (OppA) for the glycerol-AA growth 
condition (λ = 1.27) and show the results with 
(filled blue circles) and without (unfilled blue 
circle) this outlier. The corresponding trend 
line (Lowess curve, dashed line) excluding 
this outlier is indicated. (d) Same as in c for 
the average ratio of all periplasmic ABC binding proteins to their corresponding ABC transporters (in copies per cell). Error bars show the s.d. between 
triplicate measurements. Linear regression line slopes were significant from zero (P < 0.0001) for all plots.

Table 1 Summary of all identified protein modifications

Protein modification
Unique sites 

identified
Unique modified 

proteins
Known  
sitesa Selected enriched KEGG pathways/SwissProt-Keywords foundb

Acetyl (K) 61 44 25c Glycolysis/gluconeogenesis, citrate cycle (TCA cycle), pyruvate metabolism, ribosome,  
 acetylation, phosphoprotein

Acetyl (protein N terminus) 32 31d 1e Nucelotide binding, ATP-binding, acetylation, protein transport
Dimethyl (K) 14 14
Dimethyl (R) 2 2
Formyl (protein N terminus) 24 24 Phosphoprotein, cytoplasm, pyridoxal phosphate, homodimer, transferase
Methyl (K) 84 64 Acetylation, phosphoprotein, methylated amino acid, periplasm, ribosome, ABC transporters,  

 RNA degradation
Methyl (R) 67 55 Acetylation, protein biosynthesis, cytoplasm, homodimer, phosphoprotein, citrate cycle  

 (TCA cycle), ribosome
Phospho (S/T) 24 21 8f Metal binding, phosphoprotein, magnesium, manganese
Succinyl (K) 17 15 3g DNA binding, periplasm, heterodimer
Trimethyl (K) 14 13 Protein biosynthesis, acetylation
Trimethyl (R) 16 16 Protein biosynthesis

aKnown sites from recent large-scale studies. bBenjamini probability <0.05. cRef. 14. dTwo acetlyated N termini (±methionine) were identified for protein sufA. eRef. 51. fRef. 11. gRef. 15.
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We also found that certain modifications 
are enriched in specific protein classes and 
pathways (Table 1), and modify proteins of  
different expression levels (Fig. 5a) and that 
proteins can carry different types of post-
translational modifications at the same resi-
due (Supplementary Table 18).

Notably, we identified a large number of post-translational modifica-
tions, in particular protein methylation and N-terminal protein acetyla-
tion sites (Table 1). We found 31 proteins that were acetylated at the 
N terminus. Although a majority of eukaryotic proteins are acetylated 
at the N terminus, so far, Nα-acetylation in bacteria has been consid-
ered extremely rare44,45 and its function remains unclear46. We found  
that Nα-acetylation mostly occurred on N-terminal serine, alanine, 
methionine and threonine (Fig. 5b). Furthermore, we found the total 
post-translational modification abundances per protein, mainly caused 
by a decreasing Nα-acetylation with growth rate (Supplementary Fig. 16),  
to anticorrelate with growth rate (Fig. 5c and Supplementary  
Table 19). This, together with the high number of identified Nα-
acetylations, suggest that N-terminal Nα-acetylation might also have 
physiological relevance in bacteria.

To further investigate this, we analyzed Nα-acetylations in  
three mutant strains, each lacking one of the three known E. coli  
Nα-acetyltransferases, which were originally only each attributed to sin-
gle target proteins. We found that only in the ribosomal-protein-alanine 
acetyltransferase rimJ mutant did the number of Nα-acetylations sig-
nificantly (P < 0.01) decrease (Fig. 5d and Supplementary Tables 20  
and 21). We further found that the decrease could be mainly ascribed 
to serine and threonine residues that did not get Nα-acetylated in the 
rimJ mutant (Supplementary Fig. 17), which are the Nα-acetylations  
that we found to increase at slow-growth rates in the wild-type 
(Supplementary Fig. 18 and Supplementary Table 22). This finding  
suggests that RimJ is not only involved in the Nα-acetylation of 
its known target protein (RpsE), but might play a wider role in  
Nα-acetylation of other proteins with N-terminal serine and  
threonine residues, and this in a growth rate-dependent manner.

DISCUSSION
In this work we determined absolute copy numbers for >2,300 proteins 
mapped across 22 growth conditions and covering the full dynamic 

range from ~1 to more than 100,000 copies per cells. With this protein 
and condition coverage, we extended proteomic analyses of microbes 
to the level of transcriptomics, enabling large-scale biological dis-
covery also on the proteome level. Furthermore, we present the first 
global data set on methylation and Nα-acetylation in bacteria, and 
provide evidence that these post-translational modifications might 
have physiological relevance also in E. coli.

The generated protein abundance data will allow researchers of 
the systems biology community to develop quantitative models on 
certain biological subsystems, a task that requires precise knowledge 
of protein abundances. Furthermore, the data will also enable global 
computational studies, drawing on the broad protein- and condi-
tion-coverage achieved. Finally, the data will also become a valuable 
resource for the broader E. coli community.

Currently, large-scale proteomics analyses as presented here can 
only be carried out in dedicated laboratories, where researchers have 
access to equipment and expertise ranging from sample handling, to 
mass spectrometry and downstream bioinformatics analyses. However, 
we expect that quantitative proteomics technologies will eventually 
become more accessible—through service companies for example—to 
a broader range of researchers. Still, for the scientific community signif-
icant challenges lie ahead, specifically those related to the elucidation of 
the second half of the–until now–obscure proteome, and the investiga-
tion of the identified novel types of post-translational modifications.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. All mass spectrometry raw data files have been  
deposited to the ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org/) via the PRIDE partner repository47 with the 
data set identifier PXD000498.
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Figure 5 Identification and quantification 
of post-translational modifications (PTMs). 
(a) Distribution of the corresponding protein 
abundances (in copies per cell, glucose 
medium) for the different PTMs identified.  
(b) Number of all identified N-terminal  
amino acids (protein N terminus) carrying a 
Nα-acetylation. (c) Bar chart displaying summed 
modification abundances per protein for all 
quantified PTMs with increasing growth rate. 
The corresponding Lowess curve is indicated  
as dashed line. Of note, the linear regression 
line slope was significantly different from  
zero (P = 0.0127). (d) Bar chart displaying  
the number of identified N-terminal  
protein acetylations for wild-type and three 
mutant strains lacking the three known  
N-acetyltransferases annotated in the E. coli 
genome. The mean value and the calculated 
significance (t-test (two-tailed distribution,  
two-sample assuming equal variance),  
P < 0.01 (**)) are indicated.
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Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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shake-flask containing fresh medium ensuring the cells had undergone at least 
ten divisions under the respective condition and were thus in a steady state. 
The cells undergoing temperature stress were grown at 42 °C. Cells grown in 
a chemostat were inoculated from a preculture to an OD of 0.1 and allowed to 
grow in batch mode to an OD of around 0.8 before dilution (rates: 0.12, 0.2, 
0.35, 0.5) was started52. Starved cells were continuously shaken after reaching 
stationary phase for either 1 or 3 d.

Determination of cell counts and growth rates. For all shake flask batch 
cultures, cell counts were determined over time using an Accuri C6 Flow 
Cytometer (BD Biosciences). Samples used for flow cytometric analysis were 
diluted with M9 minimal medium to an OD600 value of around 0.001, cor-
responding to a cell density of ~106 cells/ml. The instrument settings were 
as follows: flow rate, medium; forward scatter (FSC-H), 106; sideward scatter 
(SSC-H), 105; all log scale. Analysis of the data was done with CFlow plus analy-
sis (Version 1.0.264.15). The growth rate of the cultures was determined from 
the cell counts over time at cell concentrations from 105 cells/ml to 109 cells/ml. 
The growth rate was calculated from at least four consecutive measurements.

Sample preparation. Samples for proteome analyses were taken from 
cells that were grown until they reached ten divisions in exponential state,  
collected by centrifugation at 20,000g at 4 °C, washed twice with 2 ml ice-cold 
PBS buffer, harvested by centrifugation at 20,000g and pellet was snap frozen 
in liquid nitrogen and stored at −80 °C until further processing. Cells were 
resuspended either in 100 µl lysis buffer 1 (100 mM ammonium bicarbonate, 
2% sodium deoxycholate) for the data set 2 (see Supplementary Fig. 4 for 
details) or 100 µl lysis buffer 2 (100 mM ammonium bicarbonate, 8 M urea, 
0.1% RapiGest) for the data set 1. The cells were disrupted by strong vortex-
ing for 3 × 30 s followed by indirect sonication (100% amplitude, 0.5 cycle,  
3 × 10 s) in a VialTweeter (Hielscher). A small aliquot of the supernatant 
was taken to determine the protein concentration of each sample using a 
BCA assay (Thermo Fisher Scientific). Proteins obtained from the different  
samples were reduced with 5 mM TCEP for 60 (15) min at 37 (99) °C for data 
set 1 (2), respectively, and alkylated with 10 mM iodoacetamide for 30 min in 
the dark at 25 °C. After quenching the reaction with 12 mM N-acetyl-cysteine, 
the proteins were proteolyzed for 4 h at 37 °C using sequencing-grade Lys-C 
(Wako Chemicals) at 1/200 w/w. Then, the samples were diluted with 100 mM  
ammonium bicarbonate buffer to a final sodium deoxycholate (urea)  
concentration of 1% (1.6 M) for data set 2 (1) samples, respectively, and  
further digested by incubation with sequencing-grade modified trypsin  
(1/50, w/w; Promega, Madison, Wisconsin) over night at 37 °C. The samples 
were acidified with 2 M HCl to a final concentration of 50 mM, incubated for 
15 min at 37 °C and the precipitated detergent removed by centrifugation at 
10,000g for 15 min. Subsequently, an aliquot of the heavy reference peptide 
mix (see Supplementary Table 1 for details) were spiked into each sample at 
a concentration of 200/20 fmol of heavy reference peptides per 1 µg of total 
endogenous protein mass. All peptide samples were then desalted by C18 
reversed-phase spin columns according to the manufacturer’s instructions 
(Macrospin, Harvard Apparatus), separated in aliquots of 150 µg peptides,  
dried under vacuum and stored at −80 °C until further use. For LC-MS  
analysis, samples were solubilized in solvent A (98% water, 2% acetonitrile, 
0.15% formic acid) at a concentration of 0.5 µg/µl and 4 µl were injected per 
LC-MS run. All samples of data set 2 were prepared in biological triplicates.

OFFGEL electrophoresis. 150 µg of dried peptides of each sample were  
solubilized in 1800 µl OFFGEL electrophoresis buffer, respectively, according  
to the manufacturer’s instructions (3100 OFFGEL Fractionator, Agilent 
Technologies). Then, all 19 peptide mixtures were separated on a 12-cm pH 3–10  
immobilized PH gradient strip (GE Healthcare), respectively, using a protocol of 
1 h rehydration at maximum 500 V, 50 µA and 200 mW. Peptides were separated at 
maximum 8,000 V, 100 µA and 300 mW until 20 kVh was reached. Subsequently, 
the 12 fractions were combined to 4 final fractions (F1–F4) using the follow-
ing pooling scheme; (F1) 1–3, (F2) 4–6, (F3) 7–9 and (F4) 10–12. The pooled  
fractions were subsequently desalted using C18 reversed-phase columns 
according to the manufacturer’s instructions (Microspin, Harvard Apparatus), 
dried under vacuum and subjected to LC-MS/MS analysis. For the initial 

ONLINE METHODS
Strains and plasmids. The Escherichia coli K-12 strain BW25113 (genotype: 
F-, ∆(araD-araB)567, ∆lacZ4787(::rrnB-3), λ-, rph-1, ∆(rhaD-rhaB)568, 
hsdR514)19 was used to generate the proteome map for all 22 conditions. 
Mutant strains with either the rimL, rimJ or rimI gene deleted were taken 
from the KEIO collection19. Correctness of the deletions were checked by 
PCR. Additionally, the proteome for the glucose and LB condition was also 
determined for the strains MG1655 (genotype: F-, λ-, rph-1)20 and NCM3722 
(genotype: F+)21.

Media. Lysogeny broth (LB) medium was prepared as follows. Five grams of 
yeast extract (BD), 10 g Tryptone (BD) and 10 g NaCl were dissolved in one 
liter of water and the mixture sterilized by autoclaving. LB plates were pro-
duced by adding 20 g agar (BD) to the LB medium mixture before autoclaving. 
M9 minimal medium without carbon source was prepared in the following 
way: to 700 ml of water, 200 ml of 5 × base salt solution (211 mM Na2HPO4, 
110 mM KH2PO4, 42.8 mM NaCl, 56.7 mM (NH4)2SO4, in H2O, autoclaved), 
10 ml of trace elements (0.63 mM ZnSO4, 0.7 mM CuCl2, 0.71 mM MnSO4, 
0.76 mM CoCl2, in H2O, autoclaved), 1 ml 0.1 M CaCl2 solution, in H2O, auto-
claved, 1 ml 1 M MgSO4 solution, in H2O, autoclaved, 2 ml of 500 × thiamine 
solution (1.4 mM, in H2O, filter sterilized) and 0.6 ml 0.1 M FeCl3 solution 
(in H2O, filter sterilized) were added. The resulting solution was filled up to 
1 l with water. All chemicals used were obtained from Sigma-Aldrich unless 
indicated otherwise. To prepare M9 minimal medium with a specific amount 
of carbon source, aqueous stock solutions were used. Aqueous stock solutions 
were prepared for every carbon source, adjusted to pH 7 by titration with  
1 M sodium hydroxide or fuming hydrochloric acid. M9 minimal medium 
was complemented with carbon source by mixing appropriate amounts of  
carbon source free M9 minimal medium and carbon source stock solutions.  
The medium was always filtrated after preparation (Steritop-GP 500 ml, 
Millipore). The following carbon sources and concentrations were used: ace-
tate (sodium acetate, 3.5 g/L), fumarate (disodium fumarate, 2.8 g/L), galactose 
(2.3 g/L), glucose (5 g/L), glucosamine (2.1 g/L), glycerol (2.2 g/L), pyruvate 
(sodium pyruvate, 3.3 g/L), succinate (disodium succinate hexahydrate, 5.7 g/L),  
fructose (5 g/L), mannose (5 g/L)g and xylose (5 g/L). For chemostat growth 
only 1 g/L of glucose was used. Glucose minimal medium for the cells grown 
with osmotic stress was supplemented with NaCl to a concentration of 50 mM, 
for the cells grown with pH stress, fuming hydrochloric acid was titrated to 
the medium until a pH of 6 was reached. The glycerol + amino acid medium 
was made by supplementing the media with glycerol to a concentration of  
2.2 g/L, and complete supplement mixture (for medium) and the following  
individual amino acids: alanine, asparagine, cysteine, glutamate, glycine, pro-
line and serine to final concentrations of alanine 1.0 mg/L (0.0 mM), adenine  
10.2 mg/L (0.1 mM), arginine 51.1 mg/L (0.3 mM), asparagine 1.6 mg/L (0.01 mM),  
aspartic acid 81.8 mg/L (0.6 mM), cysteine 1.2 mg/L (0.01 mM), glutamate 
15.2 mg/L (0.1 mM), glutamine 13.9 mg/L (0.1 mM), glycine 0.4 mg/L  
(0.01 mM), histidine 20.5 mg/L (0.1 mM), isoleucine 51.1 mg/L (0.4 mM), leucine  
102.3 mg/L (0.8 mM), lysine 51.1 mg/L (0.4 mM), methionine 20.5 mg/L 
 (0.14 mM), phenylalanine 51.1 mg/L (0.3 mM), proline 5.2 mg/L (0.05 mM), 
serine 9.2 mg/L (0.1 mM), threonine 102.3 mg/L (0.9 mM), tryptophan  
51.1 mg/L (0.3 mM), tyrosine 51.1 mg/L (0.3 mM), valine 143.2 mg/L (1.2 mM) 
and uracil 20.5 mg/L (0.2 mM). An overview about the used growth conditions 
can be found in Supplementary Tables 23 and 24.

Cultivation. Cells taken from −80 °C stocks were streaked out on LB agar 
plates. The cells were grown on the plate overnight and kept at 4 °C for a 
maximum of 3 weeks. For the preculture, a single colony was picked from 
a plate and grown overnight in 50 ml M9 glucose medium in a 500-ml 
unbaffled wide-neck Erlenmeyer flask covered by a 38-mm silicone sponge  
closure (BellCo glass) at 37 °C, 300 r.p.m. and 5-cm shaking diameter  
(ISF-4-V shaker, Kühner). For the batch cultures, the cells from a preculture 
were re-inoculated into 50 ml of the appropriate pre-warmed medium in a 
500-ml unbaffled wide-neck Erlenmeyer flask covered by a 38-mm silicone 
sponge closure (BellCo glass) and grown at 37 °C, orbital shaking at 300 r.p.m. 
and 5-cm shaking diameter (ISF-4-V, Kühner). To ensure steady state growth, 
the cells were first grown to exponential phase and then passaged into a second 
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comparison of different fractionation schemes (Supplementary Fig. 1), the 
following additional fractions pooling scheme was employed; 1, 2, 3, 4, 5–6, 
7–8, 9–10 and 11–12.

LC-MS/MS analysis. Two independent LC-MS experiments were carried 
out comprising samples with and without OGE-fractionation, respectively.  
The fractionated samples (data set 1) were analyzed using a previously described 
µRPLC-MS system9 with some modifications. The hybrid Orbitrap-Velos mass 
spectrometer was interfaced to a nano electrospray ion source–coupled online 
to an Easy-nLC system (all ThermoScientific). 1 µg of peptides were separated 
on a reversed phase (RP)-LC column (75 µm × 20 cm) packed in-house with C18 
resin (Magic C18 AQ 3 µm; Michrom BioResources) using a linear gradient from 
95% solvent A (98% water, 2% acetonitrile, 0.15% formic acid) and 5% solvent  
B (98% acetonitrile, 2% water, 0.15% formic acid) to 30% solvent B over 120 min  
at a flow rate of 0.2 µl/min. Each survey scan acquired in the Orbitrap at 
60,000 FWHM was followed by 10 MS/MS scans of the most intense precursor 
ions in the linear ion trap. Preview mode was enabled and dynamic exclu-
sion was set for 60 s. Charge state screening was employed to select for ions 
with at least two charges and rejecting ions with undetermined charge state.  
The normalized collision energy was set to 32%, and one microscan was 
acquired for each spectrum. The unfractionated samples (data set 2) were 
analyzed on a hybrid Orbitrap-Elite mass spectrometer connected online to 
an Easy-nLC 1000 system (both Thermo Scientific). Peptide separation was 
performed on a (75 µm × 45 cm) packed in-house with C18 resin (Reprosil-
AQ Pur, Dr. Maisch 1.9 µm) using a linear gradient from 95% solvent A and 
5% solvent B to 30% solvent B over 180 min at a flow rate of 0.2 µl/min.  
For MS1, 10E6 ions were accumulated in the Orbitrap cell over a maximum 
time of 300 ms and scanned at a resolution of 120,000 full width at half maxi-
mum (FWHM) (at 400 m/z) followed by 10 MS/MS scans of the most intense 
precursor ions in the Orbitrap acquired at a target setting of 50,000 ions, accu-
mulation time of 100 ms and a resolution of 15,000 FWHM (at 400 m/z). The 
normalized collision energy was set to 35%, and one microscan was acquired 
for each spectrum. A list comprising names of all samples and LC-MS runs 
included in this study is shown in Supplementary Table 25.

Protein identification and label-free quantification. The acquired raw files 
were imported into the Progenesis LC-MS software (v4.0, Nonlinear Dynamics 
Limited), which was used to extract peptide precursor ion intensities across 
all samples applying the default parameters. The generated mgf-files were 
searched using MASCOT against a decoy database (consisting of forward and 
reverse protein sequences) of the predicted proteome from E. coli (UniProt, 
download date: 2012/07/20). The database consists of 4,431 E. coli proteins 
as well as known contaminants such as porcine trypsin, human keratins and 
high abundant bovine serum proteins (Uniprot), resulting in a total of 10,388 
protein sequences. The search criteria were set as follows: full tryptic specifi-
city was required (cleavage after lysine or arginine residues, unless followed  
by proline); two missed cleavages were allowed; carbamidomethylation  
(C) was set as fixed modification; oxidation (M) was applied as variable modi-
fications; mass tolerance of 10 p.p.m. (precursor) and 0.6 (0.02 for the higher 
energy collision-induced dissociation (HCD) data set) Da (fragments). The 
database search results were filtered using the ion score to set the false dis-
covery rate (FDR) to 1% on the peptide and protein level, respectively, based 
on the number of reverse protein sequence hits in the data sets. The relative 
quantitative data obtained were normalized and statistically analyzed using our 
in-house software script SafeQuant53 (see also Supplementary Note 2).

Absolute quantification of selected proteins by targeted LC-MS. 41 proteins 
covering key enzymes and iso-enzymes of carbohydrate metabolic pathways were 
selected for absolute quantification by SRM and SID (Supplementary Table 1).  
For each protein, one heavy reference peptide was synthesized matching the 
sequence of the endogenous peptide with the highest precursor ion MS-intensity  
determined in the label-free quantification experiment. Peptides containing 
missed cleavages or a glutamine at the N terminus were excluded. Based on 
Top3 quantification25,54, the proteins were ranked according to their expected 
cellular abundance and grouped into two groups containing proteins of either 
high or low abundance. According to this, a standard mixture comprising all 
41 heavy reference peptide was generated containing 10/1 pmol/µl of peptides  

matching to high/low concentrated proteins (Supplementary Table 1).  
To generate the SRM assays, an aliquot of this mixture containing 500/50 fmol  
of each reference peptide was analyzed by shotgun LC-MS/MS using HCD 
fragmentation, database searched by Mascot applying the same settings as 
above with two changes; isotopically labeled arginine (+10 Da) and lysine 
(+8 Da) were added as variable modifications and the mass tolerance for MS2 
fragments was set to 0.02 Da. The resulting dat-file was imported to Skyline 
version 1.4 (https://brendanx-uw1.gs.washington.edu/labkey/project/home/
software/Skyline/begin.view) to generate a spectral library and select the best  
transitions for each peptide. After collision energy optimization, the 424 tran-
sitions (up to six transitions per peptide) were scheduled into time segments of 
10 min and the final transition list (Supplementary Table 26) imported to a tri-
ple quadrupole mass spectrometer (TSQ Vantage) connected to an electrospray 
ion source (both ThermoFisher Scientific). Peptide separation was carried out 
using an nEasy-LC systems (ThermoFisher Scientific) equipped with a RP-LC 
column (75 µm × 20 cm) packed in-house with C18 resin (Magic C18 AQ 3 µm; 
Michrom BioResources) using a linear gradient from 95% solvent A (0.15% 
formic acid, 2% acetonitrile) and 5% solvent B (98% acetonitrile, 0.15% formic 
acid) to 35% solvent B over 90 min at a flow rate of 0.2 µl/min. Each sample 
was analyzed in duplicate. All raw files were imported into Skyline for protein  
quantification. Based on the number of cells counted by fluorescence- 
activated cell sorting for each sample, absolute abundances for the selected 
proteins (in copies/cell) could be calculated across all samples in both data 
sets (Supplementary Tables 2 and 3).

Proteome-wide estimation of protein abundances. The absolute protein 
concentrations determined for 41 glycolytic proteins were aligned with the 
summed protein intensities as provided by the Progenesis LC-MS software 
(v4.0, Nonlinear Dynamics Limited) divided by the number of expected tryptic 
peptides as recently specified4,25. The models thus generated were applied to 
estimate absolute protein levels for all quantified proteins in the collision-
induced dissociation (CID) and HCD data set, respectively, and the expected 
errors were calculated by bootstrapping25 (Supplementary Fig. 5). To control 
for variations in protein extraction efficiency, which was lower for stationary 
phase samples, we used the total protein mass per cell (that is the summed 
masses of all quantified proteins) accurately determined in triplicates for 
the glucose experiment by our LC-MS approach (Supplementary Fig. 5A)  
and, assuming that the volumetric protein concentration is condition inde-
pendent55, we adjusted the total protein mass per cell for each condition 
according to the precisely measured cellular volumes (Supplementary Table 23  
and Supplementary Note 3) determined previously26. Owing to the higher 
number of quantified membrane proteins, higher number of growth conditions 
included and the analysis in biological triplicates (Supplementary Fig. 4),  
protein quantities obtained from data set 2 were employed for all quantitative 
analysis carry out in this study. Data generated in data set 1 were included 
only in the qualitative analysis of identified protein modifications illustrated 
in Table 1 and Figure 5a,b.

To assess the technical and biological variability of our label-free protein 
quantification approach, we performed duplicate SRM and shotgun LC-MS 
analyses of three independent biological samples grown in glucose media and 
chemostat µ = 0.5 and correlated the protein abundances determined by our 
data analysis pipeline (Supplementary Fig. 7). In addition, stoichiometries 
were determined for quantified components of protein complexes with known 
subunit composition (Supplementary Table 27).

Analysis of post-translational modifications. The extensive LC-MS data set 
generated also allowed us to search for different post-translational modifica-
tions at various positions. To get an overview of the potential modification 
present in our data set, we first carried out an Open Modification Search. 
Therefore, a spectral library was compiled from the MS data obtained from the 
glucose condition sample sequentially applying the software tools X!Tandem 
(TPP v4.6)56 and Peptide Prophet (TPP v4.6)57 followed by Liberator and 
DeLiberator (v.1.46 and v.0.19)58. The search parameters of the protein 
sequence database search tool X!Tandem were set as follows: full tryptic spe-
cificity (cleavage after lysine or arginine residues unless followed by proline), 
up to two missed cleavages, carbamidomethyl (C) as fixed modification, oxi-
dation (M) as a variable modification, 10 p.p.m. precursor mass tolerance,  
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0.6 Da fragment mass tolerance, screening a target-decoy UniProtKB/SwissProt 
E. coli (UniProt, download date: 2012/07/20) protein sequence database. 
X!Tandem search results were processed using PeptideProphet and a consen-
sus spectrum target-decoy spectral library was created using Liberator and 
DeLiberator applying default parameters. Next all MS/MS spectra from all 
samples were screened against this spectral library in an Open Modification 
Search using QuickMod (v.1.03)42. The search parameters of QuickMod were 
set to: fragment mass tolerance 0.06 Da, modification mass tolerance 150 Da,  
false discovery rate cutoff 0.01, whereas default values were used for all  
other parameters.

To verify the modifications detected above and extend the modification 
search space to lysine and arginine modifications that alter tryptic cleavage 
and therefore are missed by the QuickMod search tool, we re-searched all 
acquired MS/MS-scans against the E. coli protein database using Mascot and 
allowing additional variable modifications. Specifically, the following five sets 
of variable modifications were included: (i) acetyl (protein N-terminus and 
K); (ii) phospho (S,T,Y); (iii) mono-, di- and tri-methylation (K); (iv) mono-,  
di- and trimethylation (R), and (v) formyl (protein N-term) and succinyl 
(K). All other parameters were set as described above. All peptide spectrum 
matches (PSM) identifying modified peptides were extracted and, for each 
modification and site, the false discovery rate adjusted to less than 1%, respec-
tively, as described above. If the same modification was identified at multiple 
sites in the same peptide, the position of the modification determined in the 
PSM with the highest Mascot Ion Score was selected.

Protein modifications were quantified using label-free quantification as 
described above (see Supplementary Table 22). The local error rate for all 
identified and quantified peptides carrying a modification was set to 1% and 
to control for protein regulations, all calculated ratios of modified peptides 
were normalized by the ratios of their corresponding proteins. All filtering 
and statistical analysis steps were carried out using our in-house software 
tool SafeQuant53.

Electron microscopy. For cryo-electron microscopy, cells were taken from 
the culture by centrifugation at 1,500g for 1 min. The pellet was resuspended 
in 20 µl of the supernatant after which 2.5 µl of this suspension was attached 
to glow-discharged 200 mesh Quantifoil R3.5/1 grids inside a vitrobot (FEI, 
the Netherlands) of which the chamber was set to room temperature and 
100% humidity. After blotting for 10 s, the grids were plunge-frozen into  
liquid nitrogen-cooled liquid ethane. The complete procedure from culture to 
frozen samples maximally took 3 min. The frozen grids were then transferred 
into a FEI Tecnai20 transmission electron microscope running at 200 kV and 
imaged with a cooled slow-scan charge-coupled device camera (Ultrascan 
4000; Gatan) using the low-dose procedure. Measurements on the periplasm 
and cytoplasm were performed in ImageJ and the results are illustrated in 
detail in Supplementary Figure 14 and Supplementary Tables 28 and 29.
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