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SUMMARY

Allosteric regulation is found across all domains of
life, yet we still lack simple, predictive theories that
directly link the experimentally tunable parameters
of a system to its input-output response. To that
end, we present a general theory of allosteric tran-
scriptional regulation using the Monod-Wyman-
Changeux model. We rigorously test this model
using the ubiquitous simple repression motif in bac-
teria by first predicting the behavior of strains that
span a large range of repressor copy numbers and
DNA binding strengths and then constructing and
measuring their response. Our model not only accu-
rately captures the induction profiles of these strains,
but also enables us to derive analytic expressions for
key properties such as the dynamic range and [EC50 ].
Finally, we derive an expression for the free energy of
allosteric repressors that enables us to collapse our
experimental data onto a single master curve that
captures the diverse phenomenology of the induc-
tion profiles.

INTRODUCTION

Understanding how organisms sense and respond to changes
in their environment has long been a central theme of bio-
logical inquiry. At the cellular level, this interaction is mediated
by a diverse collection of molecular signaling pathways.
A pervasive mechanism of signaling in these pathways is allo-
steric regulation, in which the binding of a ligand induces a
conformational change in some target molecule, triggering a
signaling cascade (Lindsley and Rutter, 2006). One of the
most important examples of such signaling is offered by tran-
scriptional regulation, whereby a transcription factor’s propen-
sity to bind to DNA will be altered upon binding to an allosteric
effector.

Despite allostery’s ubiquity, we lack a formal, rigorous, and
generalizable framework for studying its effects across the broad
variety of contexts in which it appears. A key example of this is
transcriptional regulation, in which allosteric transcription factors
can be induced or corepressed by binding to a ligand. An allo-
steric transcription factor can adopt multiple conformational
states, each of which has its own affinity for the ligand and for
its DNA target site. In vitro studies have rigorously quantified
the equilibria of different conformational states for allosteric tran-
scription factors and measured the affinities of these states to
the ligand (Harman, 2001; Lanfranco et al., 2017). Despite these
experimental observations, the lack of a coherent quantitative
model for allosteric transcriptional regulation has made it impos-
sible to predict the behavior of even a simple genetic circuit
across a range of regulatory parameters.
The ability to predict circuit behavior robustly—that is, across

both broad ranges of parameters and regulatory architec-
tures—is important for multiple reasons. First, in the context of
a specific gene, accurate prediction demonstrates that all com-
ponents relevant to the gene’s behavior have been identified
and characterized to sufficient quantitative precision. Second,
in the context of genetic circuits in general, robust prediction val-
idates themodel that generated the prediction. Possessing a vali-
dated model also has implications for future work. For example,
whenwehave sufficient confidence in themodel, a single dataset
can be used to accurately extrapolate a system’s behavior in
other conditions. Moreover, there is an essential distinction be-
tween a predictive model, which is used to predict a system’s
behavior given a set of input variables, and a retroactive model,
which is used to describe the behavior of data that has already
been obtained. We note that even some of the most careful and
rigorous analysis of transcriptional regulation often entails only
a retroactive reflection on a single experiment. This raises the
fear that each regulatory architecture may require a unique anal-
ysis that cannot carry over to other systems, a worry that is exac-
erbatedby theprevalent useof phenomenological functions (e.g.,
Hill functions or ratios of polynomials) that can analyze a single
dataset but cannot be used to extrapolate a system’s behavior
in other conditions (Setty et al., 2003; Poelwijk et al., 2011; Vilar
and Saiz, 2013; Rogers et al., 2015; Rohlhill et al., 2017).
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This work explores what happens when theory takes center
stage, namely, when we first write down the equations governing
a system and describe its expected behavior across a wide array
of experimental conditions, and only then dowe set out to exper-
imentally confirm these results. Building upon previous work
(Garcia and Phillips, 2011; Brewster et al., 2014; Weinert et al.,

2014) and the work of Monod, Wyman, and Changeux (Monod
et al., 1965), we present a statistical mechanical rendering of
allostery in the context of induction and corepression (shown
schematically in Figure 1A, henceforth referred to as the MWC
model) and use it as the basis of parameter-free predictions,
which we then test experimentally. More specifically, we study

A

B

C

Figure 1. Transcription Regulation Architectures Involving an Allosteric Repressor
(A) We consider a promoter regulated solely by an allosteric repressor. When bound, the repressor prevents RNAP from binding and initiating transcription.

Induction is characterized by the addition of an effector that binds to the repressor and stabilizes the inactive state (defined as the state with a low affinity for DNA),

thereby increasing gene expression. In corepression, the effector stabilizes the repressor’s active state and thus further reduces gene expression. We list several

characterized examples of induction and corepression that support different physiological roles in E. coli (Huang et al., 2011; Li et al., 2014).

(B) A schematic regulatory response of the two architectures shown in (A) plotting the fold-change in gene expression as a function of effector concentration,

where fold-change is defined as the ratio of gene expression in the presence versus the absence of repressor. We consider the following key phenotypic

properties that describe each response curve: the minimum response (leakiness), the maximum response (saturation), the difference between the maximum and

minimum response (dynamic range), the concentration of ligand that generates a fold-change halfway between the minimal and maximal response ([EC50]), and

the log-log slope at the midpoint of the response (effective Hill coefficient).

(C) Over time, we have refined our understanding of simple repression architectures. A first round of experiments used colorimetric assays and quantitative

western blots to investigate how single-site repression is modified by the repressor copy number and repressor-DNA binding energy (Garcia and Phillips, 2011).

A second round of experiments used video microscopy to probe how the copy number of the promoter and presence of competing repressor binding sites affect

gene expression, andwe use this dataset to determine the free energy difference between the repressor’s inactive and active conformations (Weinert et al., 2014).

Here we used flow cytometry to determine the inducer-repressor dissociation constants and demonstrate that with these parameters we can predict a priori the

behavior of the system for any repressor copy number, DNA binding energy, gene copy number, and inducer concentration.
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the simple repression motif—a widespread bacterial genetic
regulatory architecture in which binding of a transcription factor
occludes binding of an RNA polymerase, thereby inhibiting tran-
scription initiation. The MWC model stipulates that an allosteric
protein fluctuates between two distinct conformations, an active
and an inactive state, in thermodynamic equilibrium (Monod
et al., 1965). During induction, for example, effector binding in-
creases the probability that a repressor will be in the inactive
state, weakening its ability to bind to the promoter and resulting
in increased expression. To test the predictions of our model
across a wide range of operator binding strengths and repressor
copy numbers, we design an Escherichia coli genetic construct
in which the binding probability of a repressor regulates gene
expression of a fluorescent reporter.
In total, the work presented here demonstrates that one

extremely compact set of parameters can be applied self-
consistently and predictively to different regulatory situations
including simple repression on the chromosome, cases in which
decoy binding sites for repressor are put on plasmids, cases in
which multiple genes compete for the same regulatory machin-
ery, cases involving multiple binding sites for repressor leading
to DNA looping, and induction by signaling (Garcia and Phillips,
2011; Garcia et al., 2011; Brewster et al., 2012, 2014; Boedicker
et al., 2013a, 2013b). Thus, rather than viewing the behavior of
each circuit as giving rise to its own unique input-output
response, the MWC model provides a means to characterize
these seemingly diverse behaviors using a single unified frame-
work governed by a small set of parameters.

RESULTS

Characterizing Transcription Factor Induction Using the
Monod-Wyman-Changeux Model
We begin by considering a simple repression genetic architec-
ture in which the binding of an allosteric repressor occludes
the binding of RNA polymerase (RNAP) to the DNA (Ackers
et al., 1982; Buchler et al., 2003). When an effector (hereafter
referred to as an ‘‘inducer’’ for the case of induction) binds to
the repressor, it shifts the repressor’s allosteric equilibrium to-
ward the inactive state as specified by the MWC model (Monod
et al., 1965). This causes the repressor to bind more weakly to
the operator, which increases gene expression. Simple repres-
sion motifs in the absence of inducer have been previously char-
acterized by an equilibrium model in which the probability of
each state of repressor and RNAP promoter occupancy is
dictated by the Boltzmann distribution (Ackers et al., 1982;
Buchler et al., 2003; Vilar and Leibler, 2003; Bintu et al., 2005a;
Garcia and Phillips, 2011; Brewster et al., 2014) (we note that
non-equilibrium models of simple repression have been shown
to have the same functional form that we derive below; Phillips,
2015).We extend thesemodels to consider allostery by account-
ing for the equilibrium state of the repressor through the
MWC model.
Thermodynamic models of gene expression begin by enumer-

ating all possible states of the promoter and their corresponding
statistical weights. As shown in Figure 2A, the promoter can
either be empty, occupied by RNAP, or occupied by either an
active or an inactive repressor. The probability that RNAP binds
to the promoter depends upon the protein copy numbers, which

we denote asP for RNAP,RA for active repressor, andRI for inac-
tive repressor. We note that repressors fluctuate between the
active and inactive conformation in thermodynamic equilibrium,
such that RA and RI will remain constant for a given inducer con-
centration (Monod et al., 1965). We assign the repressor a
different DNA binding affinity in the active and inactive state. In
addition to the specific binding sites at the promoter, we assume
that there are NNS non-specific binding sites elsewhere (i.e., on
parts of the genome outside the simple repression architecture)
where the RNAP or the repressor can bind. All specific binding
energies are measured relative to the average non-specific bind-
ing energy. Thus, D 3P represents the energy difference between
the specific and non-specific binding for RNAP to the DNA. Like-
wise, D 3RA and D 3RI represent the difference in specific and non-
specific binding energies for repressor in the active or inactive
state, respectively.
Thermodynamic models of transcription (Ackers et al., 1982;

Buchler et al., 2003; Vilar and Leibler, 2003; Bintu et al., 2005a,
2005b; Kuhlman et al., 2007; Daber et al., 2011; Garcia and Phil-
lips, 2011; Brewster et al., 2014; Weinert et al., 2014) posit that
gene expression is proportional to the probability that the
RNAP is bound to the promoter pbound, which is given by

pbound =

P

NNS
e!bD 3P

1+
RA

NNS
e!bD 3RA +

RI

NNS
e!bD 3RI +

P

NNS
e!bD 3P

; (Equation 1)

with b= 1
kBT

where kB is the Boltzmann constant and T is the tem-
perature of the system. As kBT is the natural unit of energy at the
molecular length scale, we treat the products bD 3j as single pa-
rameters within our model. Measuring pbound directly is fraught
with experimental difficulties, as determining the exact propor-
tionality between expression and pbound is not straightforward.
Instead, we measure the fold-change in gene expression due
to the presence of the repressor. We define fold-change as the
ratio of gene expression in the presence of repressor relative
to expression in the absence of repressor (i.e., constitutive
expression), namely,

fold-changeh
pboundðR>0Þ
pboundðR= 0Þ: (Equation 2)

We can simplify this expression using two well-justified ap-

proximations: (1)
P

NNS
e!bD 3P $ 1, implying that the RNAP binds

weakly to the promoter (NNS = 4.6 3 106, P z 103 (Klumpp
and Hwa, 2008), D 3Pz! 2 to ! 5 kBT (Brewster et al., 2012),

so that
P

NNS
e!bD 3Pz0:01) and (2)

RI

NNS
e!bD 3RI $ 1 +

RA

NNS
e!bD 3RA ,

which reflects our assumption that the inactive repressor binds
weakly to the promoter of interest. Using these approximations,
the fold-change reduces to the form

fold-changez
!
1+

RA

NNS
e!bD 3RA

"!1

h
!
1+pAðcÞ

R

NNS
e!bD 3RA

"!1

;

(Equation 3)

where in the last step we have introduced the fraction pA(c) of re-
pressors in the active state given a concentration c of inducer,
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such that RA(c) = pA(c)R. Since inducer binding shifts the repres-
sors from the active to the inactive state, pA(c) grows smaller as c
increases (Marzen et al., 2013).

We use theMWCmodel to compute the probability pA(c) that a
repressor with n inducer binding sites will be active. The value of
pA(c) is given by the sum of the weights of the active repressor
states divided by the sum of the weights of all possible repressor
states (see Figure 2B), namely,

pAðcÞ=

!
1+

c

KA

"n

!
1+

c

KA

"n

+ e!bD 3AI

!
1+

c

KI

"n; (Equation 4)

whereKA andKI represent the dissociation constant between the
inducer and repressor in the active and inactive states, respec-
tively, and D 3AI = 3I ! 3A is the free energy difference between a

repressor in the inactive and active state (the quantity e!D 3AI is
sometimes denoted by L [Monod et al., 1965; Marzen et al.,

2013] or KRR* [Daber et al., 2011]). In this equation,
c

KA
and

c

KI

represent the change in free energy when an inducer binds to

A

B

Figure 2. States and Weights for the Simple
Repression Motif
(A) RNAP (light blue) and a repressor compete for

binding to a promoter of interest. There are RA

repressors in the active state (red) and RI repressors

in the inactive state (purple). The difference in en-

ergy between a repressor bound to the promoter of

interest versus another non-specific site elsewhere

on the DNA equals D 3RA in the active state and D 3RI

in the inactive state; the P RNAP have a corre-

sponding energy difference D 3P relative to non-

specific binding on the DNA. NNS represents the

number of non-specific binding sites for both RNAP

and repressor.

(B) A repressor has an active conformation (red,

left column) and an inactive conformation (purple,

right column), with the energy difference between

these two states given by D 3AI. The inducer

(blue circle) at concentration c is capable of bind-

ing to the repressor with dissociation constants KA

in the active state and KI in the inactive state.

The eight states for a dimer with n = 2 inducer

binding sites are shown along with the sums of

the statistical weights of the active and inactive

states.

a repressor in the active or inactive state,

respectively, while e!bD 3AI represents
the change in free energy when the
repressor changes from the active to
inactive state in the absence of inducer.
Thus, a repressor that favors the active
state in the absence of inducer (D 3AI > 0)
will be driven toward the inactive state
upon inducer binding when KI < KA. The
specific case of a repressor dimer with
n = 2 inducer binding sites is shown in
Figure 2B.

Substituting pA(c) from Equation 4 into Equation 3 yields the
general formula for induction of a simple repression regulatory
architecture (Phillips, 2015), namely,

fold-change=

 

1+

#
1+

c

KA

$n

#
1+

c

KA

$n

+ e!bD 3AI

#
1+

c

KI

$n

R

NNS
e!bD 3RA

!!1

:

(Equation 5)

While we have used the specific case of simple repression with
induction to craft this model, the samemathematics describe the
caseof corepression inwhichbinding of an allosteric effector sta-
bilizes the active state of the repressor and decreases gene
expression (see Figure 1B). A notable property of this model is
that we shift from induction (governed byKI<KA) to corepression
(KI>KA) as the ligand transitions frompreferentially binding to the
inactive repressor state to stabilizing the active state. Further-
more, this general approach can be used to describe a variety
of other motifs such as activation, multiple repressor binding
sites, and combinations of activator and repressor binding sites
(Bintu et al., 2005b; Brewster et al., 2014; Weinert et al., 2014).
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The formula presented in Equation 5 enables us to make pre-
cise quantitative statements about induction profiles. Motivated
by the broad range of predictions implied by Equation 5, we de-
signed a series of experiments using the lac system in E. coli to
tune the control parameters for a simple repression genetic cir-
cuit. As discussed in Figure 1C, previous studies from our lab
have provided well-characterized values for many of the pa-
rameters in our experimental system, leaving only the values
of the MWC parameters (KA, KI, and D 3AI) to be determined.
We note that while previous studies have obtained values for
KA, KI, and L= e!bD 3AI (O’Gorman et al., 1980; Daber et al.,
2011), they were either based upon biochemical experiments
or in vivo conditions involving poorly characterized transcription
factor copy numbers and gene copy numbers. These differ-
ences relative to our experimental conditions and fitting tech-
niques led us to believe that it was important to perform our
own analysis of these parameters. After inferring these three
MWC parameters (see STAR Methods section ‘‘Inferring Allo-
steric Parameters from Previous Data’’ for details regarding
the inference of D 3AI, which was fitted separately from KA and
KI), we were able to predict the input/output response of the
system under a broad range of experimental conditions. For
example, this framework can predict the response of the
system at different repressor copy numbers R, repressor-oper-
ator affinities D 3RA, inducer concentrations c, and gene copy
numbers (see Appendix A, accessible through https://doi.org/
10.22002/D1.743).

Experimental Design
We test our model by predicting the induction profiles for an
array of strains that could be made using previously character-
ized repressor copy numbers and DNA binding energies. Our
approach contrasts with previous studies that have parameter-
ized induction curves of simple repression motifs, as these
have relied on expression systems where proteins are ex-
pressed from plasmids, resulting in highly variable and
unconstrained copy numbers (Murphy et al., 2007, 2010; Daber
et al., 2009, 2011; Sochor, 2014). Instead, our approach relies
on a foundation of previous work as depicted in Figure 1C.
This includes work from our laboratory that used E. coli con-
structs based on components of the lac system to demonstrate
how the Lac repressor (LacI) copy number R and operator
binding energy D 3RA affect gene expression in the absence of
inducer (Garcia and Phillips, 2011). Rydenfelt et al. (2014)
extended the theory used in that work to the case of multiple
promoters competing for a given transcription factor, which
was validated experimentally by Brewster et al. (2014), who
modified this system to consider expression from multiple-
copy plasmids as well as the presence of competing repressor
binding sites.
The present study extends this body of work by introducing

three additional biophysical parameters, D 3AI, KA, and KI, which
capture the allosteric nature of the transcription factor and com-
plement the results shown by Garcia and Phillips (2011) and
Brewster et al. (2014). Although the current work focuses on sys-
tems with a single site of repression, in STAR Methods, section
‘‘Inferring Allosteric Parameters from Previous Data,’’ we utilize
data from Brewster et al. (2014) in which multiple sites of repres-
sion are explored to characterize the allosteric free energy differ-

ence D 3AI between the repressor’s active and inactive states. As
explained in that section, this additional dataset is critical
because multiple degenerate sets of parameters can charac-
terize an induction curve equally well, with the D 3AI parameter
compensated by the inducer dissociation constants KA and KI

(see Figure S4). After fixing D 3AI as described in STAR Methods,
we can use data from single-site simple repression systems to
determine the values of KA and KI.
We determine the values of KA and KI by fitting to a single in-

duction profile using Bayesian inferential methods (Sivia and
Skilling, 2006). We then use Equation 5 to predict gene expres-
sion for any concentration of inducer, repressor copy number,
and DNA binding energy and compare these predictions against
experimental measurements. To obtain induction profiles for a
set of strains with varying repressor copy numbers, we used
modified lacI ribosomal binding sites from Garcia and Phillips
(2011) to generate strains with mean repressor copy number
per cell of R = 22 ± 4, 60 ± 20, 124 ± 30, 260 ± 40, 1,220 ±
160, and 1,740 ± 340, where the error denotes SD of at least
three replicates as measured by Garcia and Phillips (2011).
We note that R refers to the number of repressor dimers in the
cell, which is twice the number of repressor tetramers reported
by Garcia and Phillips (2011); since both heads of the repressor
are assumed to always be either specifically or non-specifically
bound to the genome, the two repressor dimers in each LacI
tetramer can be considered independently. Gene expression
was measured using a yellow fluorescent protein (YFP) gene,
driven by a lacUV5 promoter. Each of the six repressor copy
number variants were paired with the native O1, O2, or O3 lac
operator (Oehler et al., 1994) placed at the YFP transcription
start site, thereby generating 18 unique strains. The repressor-
operator binding energies (O1 D 3RA = ! 15:3±0:2 kBT, O2
D 3RA = ! 13:9±0:2 kBT, and O3 D 3RA = ! 9:7±0:1 kBT )
were previously inferred by measuring the fold-change of the
lac system at different repressor copy numbers, where the error
arises frommodel fitting (Garcia and Phillips, 2011). Additionally,
we were able to obtain the value D 3AI = 4:5 kBT by fitting to pre-
vious data as discussed in STAR Methods, section ‘‘Inferring
Allosteric Parameters from Previous Data’’. We measure fold-
change over a range of known isopropyl b-D-1-thiogalactopyra-
noside (IPTG) concentrations c, using n = 2 inducer binding sites
per LacI dimer and approximating the number of non-specific
binding sites as the length in base-pairs of the E. coli genome,
NNS = 4.6 3 106.
Our experimental pipeline for determining fold-change using

flow cytometry is shown in Figure 3. In brief, cells were grown
to exponential phase, in which gene expression reaches steady
state (Scott et al., 2010), under concentrations of the inducer
IPTG ranging between 0 and 5 mM. We measure YFP fluores-
cence using flow cytometry and automatically gate the data to
include only single-cell measurements (see STARMethods, sec-
tion ‘‘FlowCytometry’’). To validate the use of flow cytometry, we
also measured the fold-change of a subset of strains using the
established method of single-cell microscopy (see Appendix B
accessible through https://doi.org/10.22002/D1.743). We found
that the fold-change measurements obtained from microscopy
were indistinguishable from that of flow cytometry and yielded
values for the inducer binding constants KA and KI that were
within error.
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Determination of the In Vivo MWC Parameters
The three parameters that we tune experimentally are shown
in Figure 4A, leaving the three allosteric parameters (D 3AI, KA,
and KI) to be determined by fitting. We used previous LacI
fold-change data (Brewster et al., 2014) to infer that
D 3AI = 4:5 kBT (see STAR Methods, section ‘‘Inferring Allosteric
Parameters from Previous Data’’). Rather than fitting KA and KI

to our entire dataset of 18 unique constructs, we performed
Bayesian parameter estimation on data from a single strain
with R = 260 and an O2 operator (D 3RA = ! 13:9 kBT; Garcia
and Phillips, 2011) shown in Figure 4D (white circles). Using
Markov chain Monte Carlo, we determine the most likely
parameter values to be KA = 139+ 29

!22310!6 M and KI =
0:53+0:04

!0:04 3 10!6 M, which are the modes of their respective
distributions, where the superscripts and subscripts represent
the upper and lower bounds of the 95th percentile of the param-
eter value distributions (see Figure 4B). Unfortunately, we are
not able to make a meaningful value-for-value comparison of
our parameters with those of earlier studies (Daber et al.,
2009, 2011) because of uncertainties in both gene copy num-
ber and transcription factor copy numbers in these studies,
as illustrated by the plots in Appendix A (https://doi.org/10.
22002/D1.743). We then predicted the fold-change for the re-
maining 17 strains with no further fitting (see Figures 4C–4E)
together with the specific phenotypic properties described
and discussed in detail below (see Figures 4F–4J). The shaded
regions in Figures 4C–4J denote the 95% credible regions.
Factors determining the width of the credible regions are
explored in Appendix C, accessible through https://doi.org/
10.22002/D1.743.

We stress that the entire suite of predictions is based upon the
induction profile of a single strain. Our ability to make such a
broad range of predictions stems from the fact that our parame-
ters of interest, such as the repressor copy number and DNA
binding energy, appear as distinct physical parameters within
our model. While the single dataset in Figure 4D could also be
fit using a Hill function, such an analysis would be unable to pre-
dict any of the other curves in the figure (see STAR Methods,
section ‘‘Alternate Characterizations of Induction’’). Phenome-
nological expressions such as the Hill function can describe
data, but lack predictive power and are thus unable to build
our intuition, help us design de novo input-output functions,
or guide future experiments (Kuhlman et al., 2007; Murphy
et al., 2007).

Comparison of Experimental Measurements with
Theoretical Predictions
We tested the predictions shown in Figure 4 by measuring fold-
change induction profiles in strains with a broad range of
repressor copy numbers and repressor binding energies as
characterized in Garcia and Phillips (2011). With a few notable
exceptions, the results shown in Figure 5 demonstrate agree-
ment between theory and experiment. We note that there was
an apparently systematic shift in theO3D 3RA = ! 9:7 kBT strains
(Figure 5C) and all of the R = 1,220 and R = 1,740 strains. This
may be partially due to imprecise previous determinations of
their D 3RA and R values. By performing a global fit whereby we
infer all parameters including the repressor copy number R and
the binding energy D 3RA, we found better agreement for these
strains, although a discrepancy in the steepness of the response

Figure 3. An Experimental Pipeline for High-Throughput Fold-Change Measurements
Cells are grown to exponential steady state and their fluorescence is measured using flow cytometry. Automatic gating methods using forward- and side-

scattering are used to ensure that all measurements come from single cells (see STAR Methods). Mean expression is then quantified at different IPTG con-

centrations (top, blue histograms) and for a strain without repressor (bottom, green histograms), which shows no response to IPTG as expected. Fold-change is

computed by dividing the mean fluorescence in the presence of repressor by the mean fluorescence in the absence of repressor.
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for all O3 strains remains (see STARMethods, section ‘‘Global Fit
of All Parameters’’). We considered a number of hypotheses to
explain these discrepancies such as including other states
(e.g., non-negligible binding of the inactive repressor), relaxing
the weak promoter approximation, and accounting for variations
in gene and repressor copy number throughout the cell cycle,
but none explained the observed discrepancies. As an additional
test of our model, we considered strains using the synthetic Oid
operator that exhibits an especially strong binding energy of
D 3RA = ! 17 kBT (Garcia and Phillips, 2011). The global fit
agrees well with the Oid microscopy data, although it asserts a
stronger Oid binding energy of D 3RA = ! 17:7 kBT (see Appen-
dix D, accessible through https://doi.org/10.22002/D1.743).
To ensure that the agreement between our predictions and

data is not an accident of the strain we used to perform our
fitting, we also inferred KA and KI from each of the other strains.
As shown in STAR Methods section ‘‘Comparison of Parameter
Estimation and Fold-Change Predictions across Strains’’ and
Figure 5D, the inferred values of KA and KI depend minimally
upon which strain is chosen, indicating that these parameter
values are highly robust. We also performed a global fit using
the data from all 18 strains in which we fitted for the inducer
dissociation constants KA and KI, the repressor copy number
R, and the repressor-DNA binding energy D 3RA (see STAR
Methods, section ‘‘Global Fit of All Parameters’’). The resulting
parameter values were nearly identical to those fitted from any
single strain. For the remainder of the text we continue using pa-
rameters fitted from the strain withR = 260 repressors and an O2
operator.

Predicting the Phenotypic Traits of the Induction
Response
A subset of the properties shown in Figure 1 (i.e., the leakiness,
saturation, dynamic range, [EC50], and effective Hill coefficient)
are of significant interest to synthetic biology. For example,
synthetic biology is often focused on generating large re-
sponses (i.e., a large dynamic range) or finding a strong binding
partner (i.e., a small [EC50]) (Brophy and Voigt, 2014; Shis et al.,
2014). While these properties are all individually informative,
when taken together they capture the essential features of
the induction response. We reiterate that a Hill function
approach cannot predict these features a priori, whereas the
MWC model can predict the full suite of traits as shown in Fig-
ures 4F–4J.
Using our model, Equation 5, we determine analytic expres-

sions for the five phenotypic traits of interest. These results build
upon extensive work by Martins and Swain (2011), who
computed many such properties for ligand-receptor binding
within the MWC model. We begin by analyzing the leakiness,
which is the minimum fold-change observed in the absence of
ligand, given by

leakiness = fold-change ðc= 0Þ

=

!
1+

1

1+ e!bD 3AI

R

NNS
e!bD 3RA

"!1 (Equation 6)

and the saturation, which is the maximum fold-change observed
in the presence of saturating ligand,

saturation = fold-change ðc/NÞ

=

 

1+
1

1+ e!bD 3AI

#KA

KI

$n

R

NNS
e!bD 3RA

!!1

:

(Equation 7)

Systems that minimize leakiness repress strongly in the
absence of effector while systems that maximize saturation
have high expression in the presence of effector. Together, these
two properties determine the dynamic range of a system’s
response, which is given by the difference

dynamic range= saturation ! leakiness: (Equation 8)

These three properties are shown in Figures 4F–4H. We
discuss these properties in greater detail in STARMethods, sec-
tion ‘‘Properties of Induction Titration Curves.’’ Figures 6A–6C
show that the measurements of these three properties, derived
from the fold-change data in the absence of IPTG and the pres-
ence of saturating IPTG, closely match the predictions for all
three operators.
Two additional properties of induction profiles are the [EC50]

and effective Hill coefficient, which determine the range of
inducer concentration in which the system’s output goes
from its minimum to maximum value. The [EC50] denotes
the inducer concentration required to generate a system
response Equation 5 halfway between its minimum and
maximum value,

fold-change ðc=½EC50& Þ=
leakiness+ saturation

2
: (Equation 9)

The effective Hill coefficient h, which quantifies the steepness
of the curve at the [EC50] (Marzen et al., 2013), is given by

h=

!
2

d

dlogðcÞ

%
log

!
fold-change ðcÞ ! leakiness

dynamic range

"&"

c=½EC50 &
:

(Equation 10)

Figures 4I and 4J shows how the [EC50] and effective Hill coef-
ficient depend on the repressor copy number. In STAR Methods
section ‘‘Properties of Induction Titration Curves,’’ we discuss
the analytic forms of these two properties as well as their depen-
dence on the repressor-DNA binding energy.
Figures 6D and 6E shows the estimated values of the [EC50]

and the effective Hill coefficient overlaid on the theoretical pre-
dictions. Both properties were obtained by fitting Equation 5 to
each individual titration curve and computing the [EC50] and
effective Hill coefficient using Equations 9 and 10, respectively.
We find that the predictions made with the single strain fit
closely match those made for each of the strains with O1 and
O2 operators, but the predictions for the O3 operator are mark-
edly off. In STAR Methods section ‘‘Alternate Characterizations
of Induction,’’ we show that the large, asymmetric error bars for
the O3 R = 22 strain arise from its nearly flat response, where
the lack of dynamic range makes it impossible to determine
the value of the inducer dissociation constants KA and KI, as
can be seen in the uncertainty of both the [EC50] and effective
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A B

C D E

F G H

I J

Figure 4. Predicting Induction Profiles for Different Biological Control Parameters
(A) We can quantitatively tune R via ribosomal binding site (RBS) modifications, D 3RA by mutating the operator sequence, and c by adding different amounts of

IPTG to the growth medium.

(B) Previous experiments have characterized theR,NNS,D 3RA, andD 3AI parameters (see Figure 1C), leaving only the dissociation constantsKA and KI between the

inducer and the repressor in the active and inactive states, respectively, as unknown constants. These two parameters can be inferred using Bayesian parameter

estimation from a single induction curve.

(C–E) Predicted IPTG titration curves for different repressor copy numbers and operator strengths. Titration data for the O2 strain (white circles in D) with R = 260,

D 3RA = ! 13:9 kBT , n= 2, andD 3AI = 4:5 kBT can be used to determine the thermodynamic parametersKA = 139+29
!22310!6 M andKI = 0:53+0:04

!0:04310!6 M (orange

line). The remaining solid lines predict the fold-change Equation 5 for all other combinations of repressor copy numbers (shown in the legend) and repressor-DNA

binding energies corresponding to the O1 operator ð! 15:3 kBTÞ, O2 operator ð! 13:9 kBTÞ, andO3 operator ð! 9:7 kBTÞ. Error bars of experimental data show

the SEM (eight or more replicates) when this error is not smaller than the diameter of the data point. The shaded regions denote the 95% credible region, although

(legend continued on next page)
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Hill coefficient. Discrepancies between theory and data for O3
are improved, but not fully resolved, by performing a global fit
or fitting the MWC model individually to each curve (see
STAR Methods, sections ‘‘Global Fit of All Parameters’’ and
‘‘Comparison of Parameter Estimation and Fold-Change Pre-
dictions across Strains’’). It remains an open question as to
how to account for discrepancies in O3, in particular regarding
the significant mismatch between the predicted and fitted
effective Hill coefficients.

Data Collapse of Induction Profiles
Our primary interest heretofore was to determine the system
response at a specific inducer concentration, repressor copy
number, and repressor-DNA binding energy. However, the cell

does not necessarily ‘‘care about’’ the precise number of repres-
sors in the system or the binding energy of an individual operator.
The relevant quantity for cellular function is the fold-change
enacted by the regulatory system. This raises the question: given
a specific value of the fold-change, what combination of param-
eters will give rise to this desired response? In other words, what
trade-offs between the parameters of the system will produce
the same mean cellular output? These are key questions both
for understanding how the system is governed and for engineer-
ing specific responses in a synthetic biology context. To address
these questions, we follow the data collapse strategy used in a
number of previous studies (Sourjik and Berg, 2002; Keymer
et al., 2006; Swem et al., 2008), and rewrite Equation 5 as a Fermi
function,

the credible region is obscured when it is thinner than the curve itself. To display the measured fold-change in the absence of inducer, we alter the scaling of the

x axis between 0 and 10!7 M to linear rather than logarithmic, as indicated by a dashed line. Additionally, our model allows us to investigate key phenotypic

properties of the induction profiles (see Figure 1B).

(F–J) Specifically, we show predictions for the (F) leakiness, (G) saturation, (H) dynamic range, (I) [EC50], and (J) effective Hill coefficient of the induction profiles.

A B

C D

Figure 5. Comparison of Predictions against Measured and Inferred Data
(A–C) Flow-cytometrymeasurements of fold-change over a range of IPTG concentrations for (A) O1, (B) O2, and (C) O3 strains at varying repressor copy numbers,

overlaid on the predicted responses. Error bars for the experimental data show the SEM (eight or more replicates). As discussed in Figure 4, all of the predicted

induction curves were generated prior tomeasurement by inferring theMWCparameters using a single dataset (the O2 strain withR = 260, shown bywhite circles

in B). The predictions may therefore depend upon which strain is used to infer the parameters.

(D) The inferred parameter values of the dissociation constants KA and KI using any of the 18 strains instead of the O2 strain with R = 260. Nearly identical

parameter values are inferred from each strain, demonstrating that the same set of induction profiles would have been predicted regardless of which strain was

chosen. The points show the mode, and the error bars denote the 95% credible region of the parameter value distribution. Error bars not visible are smaller than

the size of the marker.
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fold-change=
1

1+ e!FðcÞ; (Equation 11)

where F(c) is the free energy of the repressor binding to the oper-
ator of interest relative to the unbound operator state in kBT units
(Keymer et al., 2006; Swem et al., 2008; Phillips, 2015), which is
given by

FðcÞ=D 3RA

kBT
! log

!
1+

c

KA

"n

!
1+

c

KA

"n

+ e!bD 3AI

!
1+

c

KI

"n ! log
R

NNS
:

(Equation 12)

The first term in F(c) denotes the repressor-operator binding
energy, the second the contribution from the inducer concentra-
tion, and the last the effect of the repressor copy number. We
note that elsewhere, this free energy has been dubbed the
Bohr parameter since such families of curves are analogous to
the shifts in hemoglobin binding curves at different pHs known
as the Bohr effect (Mirny, 2010; Phillips, 2015; Einav et al., 2016).

Instead of analyzing each induction curve individually, the
free energy provides a natural means to simultaneously
characterize the diversity in our 18 induction profiles. Figure 7A
demonstrates how the various induction curves from Figures
4C–4E all collapse onto a single master curve, where points
from every induction profile that yield the same fold-
change are mapped onto the same free energy. Figure 7B
shows this data collapse for the 216 data points in Figures
5A–5C, demonstrating the close match between the theoretical
predictions and experimental measurements across all 18
strains.
There are many different combinations of parameter values

that can result in the same free energy as defined in Equation 12.
For example, suppose a system originally has a fold-change of
0.2 at a specific inducer concentration and then operator muta-
tions increase theD 3RA binding energy (Garcia et al., 2012).While
this serves to initially increase both the free energy and the fold-
change, a subsequent increase in the repressor copy number
could bring the cell back to the original fold-change level. Such
trade-offs hint that there need not be a single set of parameters
that evoke a specific cellular response, but rather that the cell

A B C

D E

Figure 6. Predictions and Experimental Measurements of Key Properties of Induction Profiles
(A–E) Data for the (A) leakiness, (B) saturation, and (C) dynamic range are obtained from fold-change measurements in Figure 5 in the absence of IPTG

and at saturating concentrations of IPTG. The three repressor-operator binding energies in the legend correspond to the O1 operator (! 15:3 kBT ), O2

operator (! 13:9 kBT ), andO3 operator (! 9:7 kBT ). Both the (D) [EC50] and (E) effective Hill coefficient are inferred by individually fitting each operator-repressor

pairing in Figures 5A–5C separately to Equation 5 in order to smoothly interpolate between the data points.

Error bars in (A) to (C) represent the SEM for eight or more replicates; error bars in (D) and (E) represent the 95% credible region for the parameter found by

propagating the credible region of our estimates of KA and KI into Equations 9 and 10.
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explores a large but degenerate space of parameters with multi-
ple, equally valid paths.

DISCUSSION

Since the early work by Monod, Wyman, and Changeux (Monod
et al., 1963, 1965), an array of biological phenomena have been
tied to the existence of macromolecules that switch between
inactive and active states. Examples can be found in a wide
variety of cellular processes, including ligand-gated ion chan-
nels (Auerbach, 2012), enzymatic reactions (Velyvis et al.,
2007; Einav et al., 2016), chemotaxis (Keymer et al., 2006),
quorum sensing (Swem et al., 2008), G-protein-coupled recep-
tors (Canals et al., 2012), physiologically important proteins
(Milo et al., 2007; Levantino et al., 2012), and beyond. One of
the most ubiquitous examples of allostery is in the context of
gene expression, where an array of molecular players bind to
transcription factors to influence their ability to regulate gene ac-
tivity (Huang et al., 2011; Li et al., 2014). A number of studies
have focused on developing a quantitative understanding of
allosteric regulatory systems. Martins and Swain (2011) and
Marzen et al. (2013) analytically derived fundamental properties
of the MWC model, including the leakiness and dynamic range
described in this work, noting the inherent trade-offs in these
properties when tuning the model’s parameters. Work in the
Church and Voigt labs, among others, has expanded on the
availability of allosteric circuits for synthetic biology (Lutz and
Bujard, 1997; Moon et al., 2012; Rogers et al., 2015; Rohlhill
et al., 2017). Recently, Daber et al. (2009) theoretically explored
the induction of simple repression within the MWC model and
experimentally measured how mutations alter the induction pro-
files of transcription factors (Daber et al., 2011). Vilar and Saiz
analyzed a variety of interactions in inducible lac-based systems
including the effects of oligomerization and DNA folding on tran-
scription factor induction (Saiz and Vilar, 2008; Vilar and Saiz,
2013). Other work has attempted to use the lac system to recon-

cile in vitro and in vivo measurements (Tungtur et al., 2011;
Sochor, 2014).
Although this body of work has done much to improve our

understanding of allosteric transcription factors, there have
been few attempts to explicitly connect quantitative models
to experiments. Here, we generate a predictive model of
allosteric transcriptional regulation and then test the model
against a thorough set of experiments using well-characterized
regulatory components. Specifically, we used the MWC model
to build upon a well-established thermodynamic model of tran-
scriptional regulation (Bintu et al., 2005a; Garcia and Phillips,
2011), allowing us to compose the model from a minimal set
of biologically meaningful and experimentally accessible
parameters. We argue that one would not be able to generate
such a wide array of quantitative predictions by using a Hill func-
tion, which abstracts away the biophysical meaning of the
parameters into phenomenological parameters (Forsén and
Linse, 1995). Furthermore, our model reveals systematic rela-
tionships between behaviors that previously were only deter-
mined empirically.
One such property is the dynamic range, which is of consider-

able interest when designing or characterizing a genetic circuit,
and is revealed to have an interesting property: although chang-
ing the value of D 3RA causes the dynamic range curves to shift to
the right or left, each curve has the same shape and in particular
the same maximum value. This means that strains with strong or
weak binding energies can attain the same dynamic range when
the value of R is tuned to compensate for the binding energy.
This feature is not immediately apparent from the IPTG induction
curves, which show very low dynamic ranges for several of the
O1 andO3 strains. Without the benefit of models that can predict
such phenotypic traits, efforts to engineer genetic circuits with
allosteric transcription factors must rely on trial and error
to achieve specific responses (Rogers et al., 2015; Rohlhill
et al., 2017). Other calculable properties, such as leakiness,
saturation, [EC50], and the effective Hill coefficient, agree well

A B

Figure 7. Fold-Change Data from a Broad Collection of Different Strains Collapse onto a Single Master Curve
(A) Any combination of parameters can be mapped to a single physiological response (i.e., fold-change) via the free energy, which encompasses the parametric

details of the model.

(B) Experimental data from Figure 5 collapse onto a singlemaster curve as a function of the free energy Equation 12. The free energy for each strain was calculated

from Equation 12 using n = 2, D 3AI = 4:5 kBT , KA = 1393 10!6 M, KI = 0:533 10!6 M, and the strain-specific R and D 3RA. All data points represent the mean, and

error bars are the SEM for eight or more replicates.

Cell Systems 6, 1–14, April 25, 2018 11

Please cite this article in press as: Razo-Mejia et al., Tuning Transcriptional Regulation through Signaling: A Predictive Theory of Allosteric Induction,
Cell Systems (2018), https://doi.org/10.1016/j.cels.2018.02.004



with experimental measurement. One exception is the titration
profile of the weakest operator, O3. While performing a global
fit for all model parameters marginally improves the prediction
of all properties for O3 (see STAR Methods, section ‘‘Global Fit
of All Parameters’’), a noticeable difference remains when infer-
ring the effective Hill coefficient or the [EC50]. We further tried
including additional states (such as allowing the inactive
repressor to bind to the operator), relaxing the weak promoter
approximation, accounting for changes in gene and repressor
copy number throughout the cell cycle (Jones et al., 2014), and
refitting the original binding energies from Garcia et al. (2011),
but such generalizations were unable to account for the O3
data. It remains an open question as to how the discrepancy be-
tween the theory and measurements for O3 can be reconciled.

Despite the diversity observed in the induction profiles of each
of our strains, our data are unified by their reliance on funda-
mental biophysical parameters. In particular, we have shown
that our model for fold-change can be rewritten in terms of the
free energy Equation 12, which encompasses all of the physical
parameters of the system. This has proved to be an illuminating
technique in a number of studies of allosteric proteins (Sourjik
and Berg, 2002; Keymer et al., 2006; Swem et al., 2008).
Although it is experimentally straightforward to observe system
responses to changes in effector concentration c, framing the
input-output function in terms of c can give the misleading
impression that changes in system parameters lead to funda-
mentally altered system responses. Alternatively, if one can
find the ‘‘natural variable’’ that enables the output to collapse
onto a single curve, it becomes clear that the system’s output
is not governed by individual system parameters, but rather
the contributions of multiple parameters that define the natural
variable. Plotting the fold-change data against their respective
free energies leads to a clean collapse onto a single curve (see
Figure 7). This enables us to analyze how parameters can
compensate each other. For example, rather than viewing strong
repression as a consequence of low IPTG concentration c or
high repressor copy number R, we can now observe that strong
repression is achieved when the free energy F(c) % !5 kBT, a
condition which can be reached in a number of ways.

While our experiments validated the theoretical predictions in
the case of simple repression, we expect the framework pre-
sented here to apply much more generally to different biological
instances of allosteric regulation. For example, we can use this
model to study more complex systems such as when transcrip-
tion factors interact with multiple operators (Bintu et al., 2005a).
We can further explore different regulatory configurations such
as corepression, activation, and coactivation, each of which
are found in E. coli (see Appendix E, accessible through
https://doi.org/10.22002/D1.743). This work can also serve as
a springboard to characterize not just the mean but the full
gene expression distribution and thus quantify the impact of
noise on the system (Eldar and Elowitz, 2010). Another extension
of this approach would be to theoretically predict and experi-
mentally verify whether the repressor-inducer dissociation
constants KA and KI or the energy difference D 3AI between the
allosteric states can be tuned by making single amino acid sub-
stitutions in the transcription factor (Daber et al., 2011; Phillips,
2015). Finally, we expect that the kind of rigorous quantitative
description of the allosteric phenomenon provided here will

make it possible to construct biophysical models of fitness for
allosteric proteins similar to those already invoked to explore
the fitness effects of transcription factor binding site strengths
and protein stability (Gerland and Hwa, 2002; Berg et al., 2004;
Zeldovich and Shakhnovich, 2008). In total, our approach shows
that a thermodynamic formulation of the MWC model super-
sedes phenomenological fitting functions for understanding
transcriptional regulation by allosteric proteins.
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STAR+METHODS

KEY RESOURCES TABLE

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Rob
Phillips (phillips@pboc.caltech.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial Strains and DNA Constructs
All strains used in these experiments were derived from E. coli K12 MG1655 with the lac operon removed, adapted from those
created and described in Garcia and Phillips (2011). Briefly, the operator variants and YFP reporter gene were cloned into a
pZS25 backgroundwhich contains a lacUV5 promoter that drives expression as is shown schematically in Figure 2. These constructs
carried a kanamycin resistance gene andwere integrated into the galK locus of the chromosome using lRed recombineering (Sharan
et al., 2009). The lacI gene was constitutively expressed via a PLtetO-1 promoter (Lutz and Bujard, 1997), with ribosomal binding site
mutations made to vary the LacI copy number as described in Salis et al. (2009) using site-directed mutagenesis (Quickchange II;
Stratagene), with further details in Garcia and Phillips (2011). These lacI constructs carried a chloramphenicol resistance gene
andwere integrated into the ybcN locus of the chromosome. Final strain constructionwas achieved by performing repeated P1 trans-
duction (Thomason et al., 2007) of the different operator and lacI constructs to generate each combination used in this work.
Integration was confirmed by PCR amplification of the replaced chromosomal region and by sequencing. Primers and final strain
genotypes are listed in Tables S1 and S2, respectively.
It is important to note that the rest of the lac operon (lacZYA) was never expressed. The LacY protein is a transmembrane protein

which actively transports lactose as well as IPTG into the cell. As LacY was never produced in our strains, we assume that the extra-
cellular and intracellular IPTG concentration was approximately equal due to diffusion across the membrane into the cell as is sug-
gested by previous work (Fernández-Castané et al., 2012).
To make this theory applicable to transcription factors with any number of DNA binding domains, we used a different definition for

repressor copy number than has been used previously. We define the LacI copy number as the average number of repressor dimers
per cell whereas in Garcia and Phillips (2011), the copy number is defined as the average number of repressor tetramers in each cell.
To motivate this decision, we consider the fact that the LacI repressor molecule exists as a tetramer in E. coli (Lewis et al., 1996) in
which a single DNAbinding domain is formed fromdimerization of LacI proteins, so that wild-type LacImight be described as dimer of
dimers. Since each dimer is allosterically independent (i.e., either dimer can be allosterically active or inactive, independent of the
configuration of the other dimer) (Daber et al., 2009), a single LacI tetramer can be treated as two functional repressors. Therefore,
we have simply multiplied the number of repressors reported in Garcia and Phillips (2011) by a factor of two. This factor is included as
a keyword argument in the numerous Python functions used to perform this analysis, as discussed in the code documentation.
A subset of strains in these experiments were measured using fluorescence microscopy for validation of the flow cytometry data

and results. To aid in the high-fidelity segmentation of individual cells, the strains were modified to constitutively express an mCherry
fluorophore. This reporter was cloned into a pZS4*1 backbone (Lutz and Bujard, 1997) in which mCherry is driven by the lacUV5 pro-
moter. All microscopy and flow cytometry experiments were performed using these strains.

Growth Conditions for Flow Cytometry Measurements
All measurements were performed with E. coli cells grown to mid-exponential phase in standard M9 minimal media (M9 5X Salts,
Sigma-Aldrich M6030; 2 mM magnesium sulfate, Mallinckrodt Chemicals 6066-04; 100 mM calcium chloride, Fisher Chemicals
C79-500) supplemented with 0.5% (w/v) glucose. Briefly, 500 mL cultures of E. coli were inoculated into Lysogeny Broth (LB Miller
Powder, BD Medical) from a 50% glycerol frozen stock (-80'C) and were grown overnight in a 2 mL 96-deep-well plate sealed
with a breathable nylon cover (Lab Pak - Nitex Nylon, Sefar America, Cat. No. 241205) with rapid agitation for proper aeration. After
approximately 12 to 15 hr, the cultures had reached saturation and were diluted 1000-fold into a second 2 mL 96-deep-well plate
where each well contained 500 mL of M9 minimal media supplemented with 0.5% w/v glucose (anhydrous D-Glucose, Macron
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Chemicals) and the appropriate concentration of IPTG (Isopropyl b-D-1-thiogalactopyranoside, Dioxane Free, Research Products
International). These were sealed with a breathable cover and were allowed to grow for approximately 8 hr. Cells were then
diluted ten-fold into a round-bottom 96-well plate (Corning Cat. No. 3365) containing 90 mL of M9 minimal media supplemented
with 0.5%w/v glucose along with the corresponding IPTG concentrations. For each IPTG concentration, a stock of 100-fold concen-
trated IPTG in double distilled water was prepared and partitioned into 100 mL aliquots. The same parent stock was used for all ex-
periments described in this work.

E. coli Primer and Strain List
Here we provide additional details about the genotypes of the strains used, as well as the primer sequences used to generate them.
E. coli strains were derived from K12 MG1655. For those containing R = 22, we used strain HG104 which additionally has the lacYZA
operon deleted (positions 360,483 to 365,579) but still contains the native lacI locus. All other strains used strain HG105, where both
the lacYZA and lacI operons have both been deleted (positions 360,483 to 366,637).

All 25x+11-yfp expression constructs were integrated at the galK locus (between positions 1,504,078 and 1,505,112) while the
3*1x-lacI constructs were integrated at the ybcN locus (between positions 1,287,628 and 1,288,047). Integration was performed
with l Red recombineering (Sharan et al., 2009) as described in Garcia and Phillips (2011) using the primers listed in Table S1.
We follow the notation of Lutz and Bujard (Lutz and Bujard, 1997) for the nomenclature of the different constructs used. Specifically,
the first number refers to the antibiotic resistance cassette that is present for selection (2 = kanamycin, 3 = chloramphenicol, and
4 = spectinomycin) and the second number refers to the promoter used to drive expression of either YFP or LacI (1 = PLtetO-1,
and 5 = lacUV5). Note that in 25x+11-yfp, x refers to the LacI operator used, which is centered at +11 (or alternatively, begins at
the transcription start site). For the different LacI constructs, 3*1x-lacI, x refers to the different ribosomal binding site modifications
that provide different repressor copy numbers and follows from Garcia and Phillips (2011). The asterisk refers to the presence of FLP
recombinase sites flanking the chloramphenicol resistance gene that can be used to lose this resistance. However, we maintained
the resistance gene in our constructs. A summary of the final genotypes of each strain is listed in Table S2. In addition, each strain also
contained the plasmid pZS4*1-mCherry and provided constitutive expression of themCherry fluorescent protein. This pZS plasmid is
a low copy (SC101 origin of replication) where like with 3*1x-lacI, mCherry is driven by a PLtetO-1 promoter.

METHOD DETAILS

In this method details section we provide extensive and rigorous explanation of both the theoretical and experimental results shown
in this work. First in the ‘‘Flow Cytometry’’ section we detail the specifications of the equipment and the corresponding settings used
to experimentally determine the fold-change in gene expression. We also provide an explanation of the pipeline used to process the
raw data, and compare the flow cytometry results with other indirect measurements of gene expression.

In the next section ‘‘Inferring Allosteric Parameters from Previous Data’’ we specify how we inferred the free energy difference be-
tween the active and inactive state of the repressor using data from Brewster et al. (2014). In combination with an extension of the
theory that accounts for competition for transcription factors between multiple binding sites we show how this data can lead to an
estimate of the D 3AI parameter from the model.

The ‘‘Alternate Characterizations of Induction’’ section explores the use of alternative formulations for the allosteric nature of the
transcriptional repressor. By comparing our MWC formulation with the Hill function we explain the advantages and limitations of the
approach presented in the main text.

For the ‘‘Global Fit of All Parameters’’ section we follow a different procedure than the one followed in the main text in which only
two parameters were fit to a single data set. In this section we use all of the experimental data and perform a Bayesian parameter
inference where all model parameters including the repressor copy number and the repressor-DNA binding energy are allowed to
vary. By doing so we show that the minimum set of parameters fit in the main text gives almost as good characterization as including
all the extra degrees of freedom.

In section ‘‘Comparison of Parameter Estimation and Fold-Change Predictions across Strains’’ we perform a cross-comparison of
the fitting procedure followed in themain text in whichwe use each of the single strains to fit the dissociation constants of the inducer,
KA and KI, and use these values to predict the rest of the strains with the same operator. This comparison aims to show how the char-
acterization of these dissociation constants is for the most part independent of the strain chosen for the fit as long as there is enough
dynamic range in the strain to get a reliable estimate of these parameters.

Finally, in section ‘‘Properties of Induction Titration Curves’’ we derive the theoretical expressions for the induction curve properties
shown in Figures 4 and 6.

Flow Cytometry
In this section, we provide information regarding the equipment used tomake experimental measurements of the fold-change in gene
expression in the interests of transparency and reproducibility. We also provide a summary of our unsupervised method of gating the
flow cytometry measurements for consistency between experimental runs.
Equipment
Due to past experience using the Miltenyi Biotec MACSQuant flow cytometer during the Physiology summer course at the Marine
Biological Laboratory, we used the same flow cytometer for the formal measurements in this work graciously provided by the Pamela
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Björkman lab at Caltech. All measurements were made using an excitation wavelength of 488 nm with an emission filter set of 525/
50 nm. This excitation wavelength provides approximately 40% of themaximum YFP absorbance (Chroma Technology Corporation,
2016), and this was found to be sufficient for the purposes of these experiments. A useful feature of modern flow cytometry is the
high-sensitivity signal detection through the use of photomultiplier tubes (PMT) whose response can be tuned by adjusting the
voltage. Thus, the voltage for the forward-scatter (FSC), side-scatter (SSC), and gene expression measurements were tuned manu-
ally to maximize the dynamic range between autofluorescence signal and maximal expression without losing the details of the pop-
ulation distribution. Once these voltages were determined, they were used for all subsequent measurements. Extremely low signal
producing particles were discarded before data storage by setting a basal voltage threshold, thus removing the majority of spurious
events. The various instrument settings for data collection are given in Table S3.
Experimental Measurement
Prior to each day’s experiments, the analyzer was calibrated using MACSQuant Calibration Beads (Cat. No. 130-093-607) such that
day-to-day experiments would be comparable. A single data set consisted of seven bacterial strains, all sharing the same operator,
with varying repressor copy numbers (R = 0, 22, 60, 124, 260, 1220, and 1740), in addition to an autofluorescent strain, under twelve
IPTG concentrations. Data collection took place over 2 to 3 hr. During this time, the cultures were held at approximately 4'C by
placing the 96-well plate on a MACSQuant ice block. Because the ice block thawed over the course of the experiment, the samples
measured last were approximately at room temperature. This means that samples may have grown slightly by the end of the exper-
iment. To confirm that this continued growth did not alter the measured results, a subset of experiments were run in reverse meaning
that the fully induced cultures were measured first and the uninduced samples last. The plate arrangements and corresponding fold-
change measurements are shown in Figures S1A and S1B, respectively. The measured fold-change values in the reverse ordered
plate appear to be drawn from the same distribution as those measured in the forward order, meaning that any growth that might
have taken place during the experiment did not significantly affect the results. Both the forward and reverse data sets were used
in our analysis.
Unsupervised Gating
Flow cytometry data will frequently include a number of spurious events or other undesirable data points such as cell doublets and
debris. The process of restricting the collected data set to those data determined to be ‘‘real’’ is commonly referred to as gating.
These gates are typically drawn manually (Maecker et al., 2005) and restrict the data set to those points which display a high degree
of linear correlation between their forward-scatter (FSC) and side-scatter (SSC). The development of unbiased and unsupervised
methods of drawing these gates is an active area of research (Lo et al., 2008; Aghaeepour et al., 2013).
For this study, we used an automatic unsupervised gating procedure to filter the flow cytometry data based on the front and side-

scattering values returned by the MACSQuant flow cytometer. We assume that the region with highest density of points in these two
channels corresponds to single-cell measurements. Everything extending outside of this region was discarded in order to exclude
sources of error such as cell clustering, particulates, or other spurious events.
In order to define the gated region we fit a two-dimensional Gaussian function to the log10 forward-scattering (FSC) and the log10

side-scattering (SSC) data. We then kept a fraction ą ½0; 1& of the data by defining an elliptical region given by

ðx! mÞTS!1ðx! mÞ%c2
aðpÞ; (Equation 13)

where x is the 23 1 vector containing the log(FSC) and log(SSC), m is the 23 1 vector representing the mean values of log(FSC) and
log(SSC) as obtained from fitting a two-dimensional Gaussian to the data, andS is the 23 2 covariancematrix also obtained from the
Gaussian fit. c2

aðpÞ is the quantile function for probability p of the chi-squared distribution with two degrees of freedom. Figure S2
shows an example of different gating contours that would arise from different values of a in Equation 13. In this work, we chose
a= 0.4 which we deemed was a sufficient constraint to minimize the noise in the data. As explained in Appendix B on https://doi.
org/10.22002/D1.743 in we compared our high throughput flow cytometry data with single cell microscopy, confirming that the auto-
matic gating did not introduce systematic biases to the analysis pipeline. The specific code where this gating is implemented can be
found in GitHub repository (http://doi.org/10.5281/zenodo.1163620).
Comparison of Flow Cytometry with Other Methods
Previouswork from our lab experimentally determined fold-change for similar simple repression constructs using a variety of different
measurement methods (Garcia et al., 2011; Brewster et al., 2014). Garcia and Phillips used the same background strains as the ones
used in this work, but gene expression was measured with Miller assays based on colorimetric enzymatic reactions with the LacZ
protein (Garcia and Phillips, 2011). Brewster et al. (2014) used a LacI dimer with the tetramerization region replaced with an mCherry
tag, where the fold-change was measured as the ratio of the gene expression rate rather than a single snapshot of the gene output.
Figure S3 shows the comparison of these methods along with the flow cytometry method used in this work. The consistency of

these three readouts validates the quantitative use of flow cytometry and unsupervised gating to determine the fold-change in
gene expression. However, one important caveat revealed by this figure is that the sensitivity of flow cytometer measurements is
not sufficient to accurately determine the fold-change for the high repressor copy number strains in O1 without induction. Instead,
amethod with a large dynamic range such as theMiller assay is needed to accurately resolve the fold-change at such low expression
levels.
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Inferring Allosteric Parameters from Previous Data
The fold-change profile described by Equation 5 features three unknown parameters KA, KI, and D 3AI. In this section, we explore
different conceptual approaches to determining these parameters. We first discuss how the induction titration profile of the simple
repression constructs used in this paper are not sufficient to determine all three MWC parameters simultaneously, since multiple
degenerate sets of parameters can produce the same fold-change response. We then utilize an additional data set from Brewster
et al. (2014) to determine the parameter D 3AI = 4:5 kBT, after which the remaining parameters KA and KI can be extracted from
any induction profile with no further degeneracy.
Degenerate Parameter Values
In this section, we discuss how multiple sets of parameters may yield identical fold-change profiles. More precisely, we shall show
that if we try to fit the data in Figure 4C to the fold-change Equation 5 and extract the three unknown parameters (KA, KI, and D 3AI),
then multiple degenerate parameter sets would yield equally good fits. In other words, this data set alone is insufficient to uniquely
determine the actual physical parameter values of the system. This problem persists even when fitting multiple data sets simulta-
neously as in Section ‘‘Global Fit of All Parameters’’.

In Figure S4A, we fit the R = 260 data by fixing D 3AI to the value shown on the x-axis and determine the parameters KA and KI given
this constraint. We use the fold-change function Equation 5 but with bD 3RAmodified to the form bD~3RA in Equation 5 to account for the
underlying assumptions used when fitting previous data (see Section ‘‘Computing D 3AI’’ for a full explanation of why this modification
is needed).

The best-fit curves for several different values of D 3AI are shown in Figure S4B. Note that these fold-change curves are nearly over-
lapping, demonstrating that different sets of parameters can yield nearly equivalent responses. Without more data, the relationships
between the parameter values shown in Figure S4A represent the maximum information about the parameter values that can be ex-
tracted from the data. Additional experiments, which independently measure any of these unknown parameters, could resolve this
degeneracy. For example, NMR measurements could be used to directly measure the fraction ð1+ e!bD 3AI Þ!1 of active repressors in
the absence of IPTG (Gardino et al., 2003; Boulton and Melacini, 2016).
Computing D 3AI

As shown in the previous section, the fold-change response of a single strain is not sufficient to determine the threeMWCparameters
(KA, KI, and D 3AI), since degenerate sets of parameters yield nearly identical fold-change responses. To circumvent this degeneracy,
we now turn to some previous data from the lac system in order to determine the value ofD 3AI. Specifically, we consider two previous
sets of work from: (1) Garcia and Phillips (2011) and (2) Brewster et al. (2014), both of which measured fold-change with the same
simple repression system in the absence of inducer (c = 0) but at various repressor copy numbers R. The original analysis for
both data sets assumed that in the absence of inducer all of the Lac repressors were in the active state. As a result, the effective
binding energies they extracted were a convolution of the DNA binding energyD 3RA and the allosteric energy differenceD 3AI between
the Lac repressor’s active and inactive states. We refer to this convoluted energy value as D~3RA. We first disentangle the relationship
between these parameters in Garcia and Phillips and then use this relationship to extract the value of D 3AI from the Brewster et al.
dataset.

Garcia and Phillips determined the total repressor copy numbers R of different strains using quantitative western blots. Then they
measured the fold-change at these repressor copy numbers for simple repression constructs carrying the O1, O2, O3, and Oid lac
operators integrated into the chromosome. These data were then fit to the following thermodynamic model to determine the
repressor-DNA binding energies D~3RA for each operator,

fold-changeðc= 0Þ=
!
1+

R

NNS
e!bD~3RA

"!1

: (Equation 14)

Note that this functional form does not exactly match our fold-change Equation 5 in the limit c=0,

fold-changeðc= 0Þ=
!
1+

1

1+ e!bD 3AI

R

NNS
e!bD 3RA

"!1

; (Equation 15)

since it is missing the factor
1

1+ e!bD 3AI
which specifies what fraction of repressors are in the active state in the absence of inducer,

1

1+ e!bD 3AI
=pAð0Þ: (Equation 16)

In other words, Garcia and Phillips assumed that in the absence of inducer, all repressors were active. In terms of our notation, the
convoluted energy values D~3RA extracted by Garcia and Phillips (namely, for O1 and for Oid) represent

bD~3RA = bD 3RA ! log

!
1

1+ e!bD 3AI

"
: (Equation 17)

Note that if e!bD 3AI $ 1, then nearly all of the repressors are active in the absence of inducer so that D~3RAzD 3RA. In simple repres-
sion systemswhere we definitively know the value ofD 3RA andR, we can use Equation 15 to determine the value ofD 3AI by comparing
with experimentally determined fold-change values. However, the binding energy values that we use from Garcia and Phillips (2011)
are effective parameters D~3RA. In this case, we are faced with an undetermined system in which we have more variables than
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equations, and we are thus unable to determine the value of D 3AI. In order to obtain this parameter, we must turn to a more complex
regulatory scenario which provides additional constraints that allow us to fit for D 3AI.
A variation on simple repression in whichmultiple copies of the promoter are available for repressor binding (for instance, when the

simple repression construct is on plasmid) can be used to circumvent the problems that arise when using D~3RA. This is because the
behavior of the system is distinctly different when the number of active repressors pA(0)R is less than or greater than the number of
available promoters N. Repression data for plasmids with known copy number N allows us to perform a fit for the value of D 3AI.
To obtain an expression for a system with multiple promoters N, we followWeinert et al. (2014), writing the fold-change in terms of

the the grand canonical ensemble as

fold-change=
1

1+ lre!bD 3RA
; (Equation 18)

where lr=e
bm is the fugacity and m is the chemical potential of the repressor. The fugacity will enable us to easily enumerate the

possible states available to the repressor.
To determine the value of lr, we first consider that the total number of repressors in the system, Rtot, is fixed and given by

Rtot =RS +RNS; (Equation 19)

where RS represents the number of repressors specifically bound to the promoter and RNS represents the number of repressors
nonspecifically bound throughout the genome. The value of RS is given by

RS =N
lre!bD 3RA

1+ lre!bD 3RA
; (Equation 20)

whereN is the number of available promoters in the cell. Note that in countingN, we do not distinguish between promoters that are on
plasmid or chromosomally integrated provided that they both have the same repressor-operator binding energy (Weinert et al., 2014).
The value of RNS is similarly give by

RNS =NNS
lr

1+ lr
; (Equation 21)

where NNS is the number of non-specific sites in the cell (recall that we use NNS = 4.6 3 106 for E. coli).
Substituting in Equations 20 and 21 into the modified Equation 19 yields the form

pAð0ÞRtot =
1

1+ e!bD 3AI

!
N

lre!bD 3RA

1+ lre!bD 3RA
+NNS

lr

1+ lr

"
; (Equation 22)

where we recall from Equation 17 that bD 3RA = bD~3RA + log

!
1

1+ e!bD 3AI

"
: Numerically solving for lr and plugging the value back into

Equation 18 yields a fold-change function in which the only unknown parameter is D 3AI.
With these calculations in hand, we can now determine the value of the D 3AI parameter. Figure S5A shows how different values of

D 3AI lead to significantly different fold-change response curves. Thus, analyzing the specific fold-change response of any strain with a
known plasmid copy number N will fix D 3AI. Notably, the inflection point of Equation 22 occurs near pA(0)Rtot = N (as shown by the
triangles in Figure S5A), so that merely knowing where the fold-change response transitions from concave down to concave up is
sufficient to obtain a rough value for D 3AI. We note, however, that for D 3AIT5 kBT, increasing D 3AI further does not affect the fold-
change because essentially every repressor will be in the active state in this regime. Thus, if the D 3AI is in this regime, we can only
bound it from below.
We now analyze experimental induction data for different strains with known plasmid copy numbers to determine D 3AI. Figure S5B

shows experimental measurements of fold-change for twoO1 promoters withN= 64 andN= 52 copy numbers and oneOid promoter
with N = 10 from Brewster et al. (2014). By fitting these data to Equation 18, we extracted the parameter value D 3AI = 4:5 kBT.
Substituting this value into Equation 16 shows that 99% of the repressors are in the active state in the absence of inducer and
D~3RAzD 3RA, so that all of the previous energies and calculations made by Garcia and Phillips (2011; Brewster et al., 2014) were
accurate.

Alternate Characterizations of Induction
In this section we discuss a different way to describe the induction data, namely, through using the conventional Hill approach. We
first demonstrate how using a Hill function to characterize a single induction curve enables us to extract features (such as the
midpoint and sharpness) of that single response, but precludes any predictions of the other seventeen strains. We then discuss
how a thermodynamic model of simple repression coupled with a Hill approach to the induction response can both characterize
an induction profile and predict the response of all eighteen strains, although we argue that such a description provides no insight
into the allosteric nature of the protein and how mutations to the repressor would affect induction. We conclude the section by dis-
cussing the differences between such a model and the statistical mechanical model used in the main text.
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Fitting Induction Curves Using a Hill Function Approach
The Hill equation is a phenomenological function commonly used to describe data with a sigmoidal profile (Murphy et al., 2007; Mur-
phy et al., 2010; Rogers et al., 2015). Its simplicity and ability to estimate the cooperativity of a system (through the Hill coefficient) has
led to its widespread use in many domains of biology (Frank, 2013). Nevertheless, the Hill function is often criticized as a physically
unrealistic model and the extracted Hill coefficient is often difficult to contextualize in the physics of a system (Weiss, 1997). In the
present work, we note that a Hill function, even if it is only used because of its simplicity, presents nomechanism to understand how a
regulatory system’s behavior will change if physical parameters such as repressor copy number or operator binding energy are var-
ied. In addition, the Hill equation provides no foundation to explore howmutating the repressor (e.g., at its inducer-binding interface)
would modify its induction profile, although statistical mechanical models have proved capable of characterizing such scenarios
(Keymer et al., 2006; Swem et al., 2008; Einav et al., 2016).

Consider the general Hill equation for a single induction profile given by

fold-change= ðleakinessÞ+ ðdynamic rangeÞ

#c
K

$n

1+
#c
K

$n ; (Equation 23)

where, as in the main text, the leakiness represents the minimum fold-change, the dynamic range represents the difference between
the maximum and minimum fold-change, K is the repressor-inducer dissociation constant, and n denotes the Hill coefficient that
characterizes the sharpness of the curve (n > 1 signifies positive cooperativity, n = 1 denotes no cooperativity, and n < 1 represents
negative cooperativity). Figure S6 shows how the individual induction profiles can be fit (using the same Bayesian methods as
described in Section ‘‘Global Fit of All Parameters’’) to this Hill response, yielding a similar response to that shown in Figure 4D. How-
ever, characterizing the induction response in this manner is unsatisfactory because each curve must be fit independently thus
removing our predictive power for other repressor copy numbers and binding sites.

The fitted parameters obtained from this approach are shown in Figure S7. These are rather unsatisfactory because they do not
clearly reflect the properties of the physical system under consideration. For example, the dissociation constant K between LacI and
inducer should not be affected by either the copy number of the repressor or the DNA binding energy, and yet we see upward trends
as R is increased or the binding energy is decreased. Here, the K parameter ultimately describes the midpoint of the induction curve
and therefore cannot strictly be considered a dissociation constant. Similarly, the Hill coefficient n does not directly represent the
cooperativity between the repressor and the inducer as the molecular details of the copy number and DNA binding strength are sub-
sumed in this parameter as well. While the leakiness and dynamic range describe important phenotypic properties of the induction
response, this Hill approach leaves us with no means to predict them for other strains. In summary, the Hill equation Equation 23
cannot predict how an induction profile varies with repressor copy number, operator binding energy, or how mutations will alter
the induction profile. To that end, we turn to a more sophisticated approach where we use the Hill function to describe the available
fraction of repressor as a function of inducer concentration.
Fitting Induction Curves Using a Combination Thermodynamic Model and Hill Function Approach
Motivated by the inability in the previous section to characterize all eighteen strains using the Hill function with a single set of param-
eters, here we combine the Hill approach with a thermodynamic model of simple repression to garner predictive power. More
specifically, we will use the thermodynamic model in Figure 2A but substitute the statistical model in Figure 2B with the phenome-
nological Hill function Equation 23.

Following Equations 1, 2, and 3, fold-change is given by

fold-change=

!
1+pAðcÞ

R

NNS
e!bD 3RA

"!1

; (Equation 24)

where the Hill function

pAðcÞ=pmax
A ! prange

A

!
c

KD

"n

1+

!
c

KD

"n ; (Equation 25)

represents the fraction of repressors in the allosterically active state, with pmax
A denoting the fraction of active repressors in the

absence of inducer and pmax
A ! prange

A theminimum fraction of active repressors in the presence of saturating inducer. TheHill function
characterizes the inducer-repressor binding while the thermodynamic model with the known constants R, NNS, and D 3RA describes
how the induction profile changes with repressor copy number and repressor-operator binding energy.

As in themain text, we can fit the four Hill parameters – the vertical shift and stretch parameters pmax
A and prange

A , the Hill coefficient n,
and the inducer-repressor dissociation constant KD – for a single induction curve and then use the fully characterized Equation 24 to
describe the response of each of the eighteen strains. Figure S8 shows this process carried out by fitting the O2 R = 260 strain (white
circles in [B]) and predicting the behavior of the remaining seventeen strains.

Although the curves in Figure S8 are nearly identical to those in Figure 4 (which were made using the MWCmodel Equation 5), we
stress that the Hill function approach is more complex than the MWC model (containing four parameters instead of three) and it
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obscures the relationships to the physical parameters of the system. For example, it is not clear whether the fit parameter
KD = 4+ 2

!1310!6 M relays the dissociation constant between the inducer and active-state repressor, between the inducer and the
inactive-state repressor, or some mix of the two quantities.
In addition, the MWCmodel Equation 5 naturally suggests further quantitative tests for the fold-change relationship. For example,

mutating the repressor’s inducer binding site would likely alter the repressor-inducer dissociation constants KA and KI, and it would
be interesting to find out if such mutations also modify the allosteric energy difference D 3AI between the repressor’s active and inac-
tive conformations. For our purposes, the Hill function Equation 25 falls short of the connection to the physics of the system and pro-
vides no intuition about how transcription depends upon such mutations. For these reasons, we present the thermodynamic model
coupled with the statistical mechanical MWC model approach in the paper.

Global Fit of all Parameters
In themain text, we used the repressor copy numbersR and repressor-DNA binding energiesD 3RA as reported by Garcia and Phillips
(2011). However, any error in these previous measurements of R and D 3RA will necessarily propagate into our own fold-change pre-
dictions. In this section we take an alternative approach to fitting the physical parameters of the system to that used in the main text.
First, rather than fitting only a single strain, we fit the entire data set in Figure 5 along with microscopy data for the synthetic operator
Oid (see Appendix D accessible through https://doi.org/10.22002/D1.743). In addition, we also simultaneously fit the parameters
R and D 3RA using the prior information given by the previous measurements. By using the entire data set and fitting all of the param-
eters, we obtain the best possible characterization of the statistical mechanical parameters of the system given our current state of
knowledge. As a point of reference, we state all of the parameters of the MWC model derived in the text in Table S3.
To fit all of the parameters simultaneously, we follow a similar approach to the one detailed in the Quantification and Statistical

Analysis section. Briefly, we perform a Bayesian parameter estimation of the dissociation constants KA and KI, the six different
repressor copy numbers R corresponding to the six lacI ribosomal binding sites used in our work, and the four different binding en-
ergies D 3RA characterizing the four distinct operators used to make the experimental strains. As in the main text, we fit the logarithms

~kA = ! log
KA

1 M
and ~kI = ! log

KI

1 M
of the dissociation constants which grants better numerical stability.

As in Equations 24 and 25, we assume that deviations of the experimental fold-change from the theoretical predictions are normally
distributed with mean zero and standard deviation s. We begin by writing Bayes’ theorem,

P
#
~kA; ~kI;R;D 3RA;sjD

$
=
P
#
D
''~kA; ~kI;R;D 3RA;s

$
P
#
~kA; ~kI;R;D 3RA;s

$

PðDÞ ; (Equation 26)

whereR is an array containing the six different repressor copy numbers to be fit,D 3RA is an array containing the four binding energies
to be fit, and D is the experimental fold-change data. The term P (~kA, ~kI, R, D 3RA, sjD) gives the probability distributions of all of the
parameters given the data. The term P (Dj~kA, ~kI,R,D 3RA, s) represents the likelihood of having observed our experimental data given
some value for each parameter. P (~kA, ~kI, R,D 3RA, s) contains all the prior information on the values of these parameters. Lastly, P(D)
serves as a normalization constant and hence can be ignored.
Given n independent measurements of the fold-change, the first term in can be written as

P
#
D
''~kA; ~kI;R;D 3RA;s

$
=

1
(
2ps2

)n
2

Yn

i = 1

exp

2

64!

#
fcðiÞ

exp ! fc
#
~kA; ~kI;RðiÞ;D 3

ðiÞ
RA; c

ðiÞ
$$2

2s2

3

75; (Equation 27)

where fcðiÞexp is the ith experimental fold-change and fcð,,,Þ is the theoretical prediction. Note that the standard deviation s of this dis-
tribution is not known and hence needs to be included as a parameter to be fit.
The second term in represents the prior information of the parameter values. We assume that all parameters are independent of

each other, so that

P
#
~kA; ~kI;R;D 3RA;s

$
=P

#
~kA
$
,P

#
~kI
$
,
Y

i

P
(
RðiÞ),

Y

j

P
#
D 3

ðjÞ
RA

$
,PðsÞ; (Equation 28)

where the superscript (i) indicates the repressor copy number of index i and the superscript (j) denotes the binding energy of index j.
As above, we note that a prior must also be included for the unknown parameter s.
Because we knew nothing about the values of ~kA, ~kI, and s before performing the experiment, we assign maximally uninformative

priors to each of these parameters. More specifically, we assign uniform priors to ~kA and ~kI and a Jeffreys prior to s, indicating thatKA,
KI, and s are scale parameters (Sivia and Skilling, 2006). We do, however, have prior information for the repressor copy numbers and
the repressor-DNA binding energies fromGarcia and Phillips (2011). This prior knowledge is included within our model using an infor-
mative prior for these two parameters, which we assume to be Gaussian. Hence each of the R(i) repressor copy numbers to be fit
satisfies
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P
(
RðiÞ)= 1ffiffiffiffiffiffiffiffiffiffiffiffi

2ps2
Ri

q exp

0

B@ !

#
RðiÞ ! R

ðiÞ
$2

2s2
Ri

1

CA ; (Equation 29)

where R
ðiÞ
is the mean repressor copy number and sRi

is the variability associated with this parameter as reported in Garcia and Phil-
lips (2011). Note that we use the given value of sRi

from previous measurements rather than leaving this as a free parameter.
Similarly, the binding energies D 3

ðjÞ
RA are also assumed to have a Gaussian informative prior of the same form. We write it as

P
#
D 3

ðjÞ
RA

$
=

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

3j

q exp

0

B@ !

#
D 3

ðjÞ
RA ! D 3

ðjÞ
RA

$2

2s2
3j

1

CA ; (Equation 30)

whereD 3
ðjÞ
RA is the binding energy and s 3j is the variability associated with that parameter around themean value as reported in Garcia

and Phillips (2011).
The sRi and s 3j parameters will constrain the range of values for R(i) and D 3

ðjÞ
RA found from the fitting. For example, if for some i the

standard deviation sRi is very small, it implies a strong confidence in the previously reported value. Mathematically, the exponential in
Equation 29 will ensure that the best-fit R(i) lies within a few standard deviations of R

ðiÞ
. Since we are interested in exploring which

values could give the best fit, the errors are taken to be wide enough to allow the parameter estimation to freely explore parameter
space in the vicinity of the best estimates. Putting all these terms together, we useMarkov chain Monte Carlo to sample the posterior
distribution P (~kA, ~kI,R,D 3RA, sjD), enabling us to determine both themost likely value for each physical parameter as well as its asso-
ciated credible region (see the GitHub repository (http://doi.org/10.5281/zenodo.1163620) for the implementation).

Figure S9 shows the result of this global fit. When compared with Figure 5 we can see that fitting for the binding energies and the
repressor copy numbers improves the agreement between the theory and the data. Table S4 summarizes the values of the param-
eters as obtained with this MCMC parameter inference. We note that even though we allowed the repressor copy numbers and
repressor-DNA binding energies to vary, the resulting fit values were very close to the previously reported values. The fit values of
the repressor copy numbers were all within one standard deviation of the previous reported values provided in Garcia and Phillips
(2011). And although some of the repressor-DNA binding energies differed by a few standard deviations from the reported values,
the differences were always less than 1 kBT, which represents a small change in the biological scales we are considering. The biggest
discrepancy between our fit values and the previous measurements arose for the synthetic Oid operator, which we discuss in more
detail in Appendix D accessible through https://doi.org/10.22002/D1.743.

Figure S10 shows the same key properties as in Figure 6, but uses the parameters obtained from this global fitting approach. We
note that even by increasing the number of degrees of freedom in our fit, the result does not change substantially, due to in general,
only minor improvements between the theoretical curves and data. For the O3 operator data, again, agreement between the pre-
dicted [EC50] and the effective Hill coefficient remain poor due the theory being unable to capture the steepness of the response
curves.

Comparison of Parameter Estimation and Fold-Change Predictions across Strains
The inferred parameter values forKA andKI in themain text were determined by fitting to induction fold-changemeasurements from a
single strain (R = 260, D 3RA = ! 13:9 kBT, n=2, and D 3AI = 4:5 kBT ). After determining these parameters, we were able to predict the
fold-change of the remaining strains without any additional fitting. However, the theory should be independent of the specific strain
used to estimate KA and KI; using any alternative strain to fit KA and KI should yield similar predictions. For the sake of completeness,
here we discuss the values for KA and KI that are obtained by fitting to each of the induction data sets individually. These fit param-
eters are shown in Figure 5D of the main text, where we find close agreement between strains, but with some deviation and poorer
inferences observed with the O3 operator strains. Overall, we find that regardless of which strain is chosen to determine the unknown
parameters, the predictions laid out by the theory closely match the experimental measurements. Here we present a comparison of
the strain specific predictions and measured fold-change data for each of the three operators considered.

We follow the approach taken in the main text and use Equation 5 to infer values for KA and KI by fitting to each combination of
binding energy D 3RA and repressor copy number R. We then use these fitted parameters to predict the induction curves of all other
strains. In Figure S11 we plot these fold-change predictions along with experimental data for each of our strains that contains an O1
operator. To make sense of this plot consider the first row as an example. In the first row, KA and KI were estimated using data from
the strain containing R=22 and an O1 operator (top leftmost plot, shaded in gray). The remaining plots in this row show the predicted
fold-change using these values for KA and KI. In each row, we then infer KA and KI using data from a strain containing a different
repressor copy number (R = 60 in the second row, R = 124 in the third row, and so on). In Figures S12 and S13, we similarly apply
this inference to our strains with O2 and O3 operators, respectively. We note that the overwhelming majority of predictions closely
match the experimental data.The notable exception is that using the R = 22 strain provides poor predictions for the strains with large
copy numbers (especially R = 1220 and R = 1740), though it should be noted that predictions made from the R = 22 strain have
considerably broader credible regions. This loss in predictive power is due to the poorer estimates of KA and KI for the R = 22 strain
as shown in Figure 5D.
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Properties of Induction Titration Curves
In this section, we expand on the phenotypic properties of the induction response that were explored in the main text (see Figure 1).
We begin by expanding on our discussion of dynamic range and then show the analytic form of the [EC50] for simple repression.
As stated in themain text, the dynamic range is defined as the difference between themaximum andminimum system response, or

equivalently, as the difference between the saturation and leakiness of the system. Using Equations 6, 7, and 8, the dynamic range is
given by

dynamic range=

0

B@ 1+
1

1+ e!bD 3AI

!
KA

KI

"n

R

NNS
e!bD 3RA

1

CA

!1

!
!
1+

1

1+ e!bD 3AI

R

NNS
e!bD 3RA

"!1

: (Equation 31)

The dynamic range, along with saturation and leakiness were plotted with our experimental data in Figures 6A–6C as a function of
repressor copy number. Figure S14 shows how these properties are expected to vary as a function of the repressor-operator binding
energy. Note that the resulting curves for all three properties have the same shape as in Figures 6A–6C, since the dependence of the
fold-change upon the repressor copy number and repressor-operator binding energy are both contained in a single multiplicative
term, Re!bD 3RA . Hence, increasing R on a logarithmic scale (as in Figures 6A–6C) is equivalent to decreasing D 3RA on a linear scale
(as in Figure S14).
An interesting aspect of the dynamic range is that it exhibits a peak as a function of either the repressor copy number (or equiv-

alently of the repressor-operator binding energy). Differentiating the dynamic range Equation 31 and setting it equal to zero, we find
that this peak occurs at

R(

NNS
= e!bðD 3AI!D 3RAÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eD 3AI + 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eD 3AI +

!
KA

KI

"n
s

: (Equation 32)

The magnitude of the peak is given by

max dynamic range=

! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eD 3AI + 1

p
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eD 3AI +

!
KA

KI

"n
s "2

!
KA

KI

"n

! 1

; (Equation 33)

which is independent of the repressor-operator binding energyD 3RA or R, and will only cause a shift in the location of the peak but not
its magnitude.
We nowconsider the two remaining properties, the [EC50] and effective Hill coefficient, which determine the horizontal properties of

a system - that is, they determine the range of inducer concentration in which the system’s response goes from its minimum to
maximum values. The [EC50] denotes the inducer concentration required to generate fold-change halfway between its minimum
and maximum value and was defined implicitly in Equation 9. For the simple repression system, the [EC50] is given by

½EC50&
KA

=

KA

KI
! 1

KA

KI
!

 
#
1+

R

NNS
e!bD 3RA

$
+
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KI

$n#
2e!bD 3AI +

#
1+
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NNS
e!bD 3RA

$$

2
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1+

R

NNS
e!bD 3RA

$
+ e!bD 3AI +

#KA

KI

$n

e!bD 3AI

!1
n

! 1: (Equation 34)

Using this expression, we can then find the effective Hill coefficient h, which equals twice the log-log slope of the normalized fold-
change evaluated at c = [EC50] (see Equation 10). In Figures 6D and 6E we show how these two properties vary with repressor copy
number, and in Figure S15 we demonstrate how they depend on the repressor-operator binding energy. Both the [EC50] and h vary
significantly with repressor copy number for sufficiently strong operator binding energies. Notably, for weak operator binding en-
ergies on the order of the O3 operator, it is predicted that the effective Hill coefficient should not vary with repressor copy number.
In addition, themaximum possible Hill coefficient is roughly 1.75, which stresses the point that the effective Hill coefficient should not
be interpreted as the number of inducer binding sites, which is exactly 2.

QUANTIFICATION AND STATISTICAL ANALYSIS

In this work, we determine themost likely parameter values for the inducer dissociation constants KA and KI of the active and inactive
state, respectively, using Bayesianmethods.We compute the probability distribution of the value of each parameter given the dataD,
which by Bayes’ theorem is given by
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PðKA;KIjDÞ=
PðDjKA;KIÞPðKA;KIÞ

PðDÞ
; (Equation 35)

where D is all the data composed of independent variables (repressor copy number R, repressor-DNA binding energy D 3RA, and
inducer concentration c) and one dependent variable (experimental fold-change). PðDjKA;KIÞ is the likelihood of having observed
the data given the parameter values for the dissociation constants, P (KA, KI) contains all the prior information on these parameters,
and P (D) serves as a normalization constant, which we can ignore in our parameter estimation. Equation 5 assumes a deterministic
relationship between the parameters and the data, so in order to construct a probabilistic relationship as required by Equation 35, we
assume that the experimental fold-change for the ith datum given the parameters is of the form

fold! changeðiÞ
exp =

0
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RðiÞ
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ðiÞ
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1

CA

!1

+ 3ðiÞ; (Equation 36)

where 3ðiÞ represents the departure from the deterministic theoretical prediction for the ith data point. If we assume that these 3ðiÞ errors
are normally distributed with mean zero and standard deviation s, the likelihood of the data given the parameters is of the form

PðDjKA;KI; sÞ=
1

ð2ps2Þ
n
2

Yn

i = 1
exp

2

64!

#
fold! changeðiÞ

exp ! fold! change
#
KA;KI;RðiÞ;D 3

ðiÞ
RA; c

ðiÞ
$$2

2s2

3

75; (Equation 37)

where fold! changeðiÞexp is the experimental fold-change and fold! changeð/Þ is the theoretical prediction. The product Pn
i = 1 cap-

tures the assumption that the n data points are independent. Note that the likelihood and prior terms now include the extra unknown
parameter s. In applying Equation 37, a choice of KA and KI that provides better agreement between theoretical fold-change predic-
tions and experimental measurements will result in a more probable likelihood.

Both mathematically and numerically, it is convenient to define ~kA = ! log
KA

1 M
and ~kI = ! log

KI

1 M
and fit for these parameters on a

log scale. Dissociation constants are scale invariant, so that a change from 10 mM to 1 mM leads to an equivalent increase in affinity as

a change from 1 mM to 0.1 mM.With these definitions we assume for the prior P (~kA, ~kI, s) that all three parameters are independent. In

addition, we assume a uniform distribution for ~kA and ~kI and a Jeffreys prior (Sivia and Skilling, 2006) for the scale parameter s. This
yields the complete prior

P
#
~kA; ~kI;s

$
h

1#
~k
max

A ! ~k
min

A

$ 1#
~k
max

I ! ~k
min

I

$ 1

s
: (Equation 38)

These priors are maximally uninformative meaning that they imply no prior knowledge of the parameter values. We defined the ~kA
and ~kA ranges uniform on the range of!7 to 7, although we note that this particular choice does not affect the outcome provided the
chosen range is sufficiently wide.

Putting all these terms together we can now sample from Pð~kA; ~kI;sjDÞ using Markov chain Monte Carlo (see GitHub repository,
http://doi.org/10.5281/zenodo.1163620) to compute the most likely parameter as well as the error bars (given by the 95% credible
region) for KA and KI.

DATA AND SOFTWARE AVAILABILITY

All of the data used in this work as well as all relevant code can be found at this dedicated website. Data were collected, stored, and
preserved using the Git version control software in combination with off-site storage and hosting website GitHub. Code used to
generate all figures and complete all processing step as and analyses are available on the GitHub repository. Many analysis files
are stored as instructive Jupyter Notebooks. The scientific community is invited to fork our repositories and open constructive issues
on the GitHub repository (http://doi.org/10.5281/zenodo.1163620).
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Figure S1. Plate arrangements for flow cytometry, related to STAR Methods. (A) Samples
were measured primarily in the forward arrangement with a subset of samples measured in reverse. The
black arrow indicates the order in which samples were processed by the flow cytometer. (B) The
experimentally measured fold-change values for the two sets of plate arrangements show that samples
measured in the forward arrangement appear to be indistinguishable from those measured in reverse
order.



Figure S2. Representative unsupervised gating contours, related to STAR Methods.
Points indicate individual flow cytometry measurements of forward scatter and side scatter. Colored
points indicate arbitrary gating contours ranging from 100% (↵ = 1.0) to 5% (↵ = 0.05). All
measurements for this work were made computing the mean fluorescence from the 40th percentile
(↵ = 0.4), shown as orange points.



Figure S3. Comparison of experimental methods to determine the fold-change, related to
STAR Methods. The fold-change in gene expression for equivalent simple-repression constructs has
been determined using three independent methods: flow cytometry (this work), colorimetric Miller
assays (Garcia and Phillips 2011a), and video microscopy (Brewster et al. 2014). All three methods give
consistent results, although flow cytometry measurements lose accuracy for fold-change less than 10�2.
Note that the repressor-DNA binding energies �"RA used for the theoretical predictions were
determined in Garcia and Phillips (2011a).



Figure S4. Multiple sets of parameters yield identical fold-change responses, related to
STAR Methods. (A) The data for the O2 strain (�"RA = �13.9 kBT ) with R = 260 in Fig. 4(C) was
fit using Eq. (5) with n = 2. �"AI is forced to take on the value shown on the x-axis, while the KA and
KI parameters are fit freely. (B) The resulting best-fit functions for several value of �"AI all yield
nearly identical fold-change responses.



Figure S5. Fold-change of multiple identical genes, related to STAR Methods. (A) In the
presence of N = 10 identical promoters, the fold-change Eq. (6) depends strongly on the allosteric
energy difference �"AI between the Lac repressor’s active and inactive states. The vertical dotted lines
represent the number of repressors at which RA = N for each value of �"AI . (B) Using fold-change
measurements from (Brewster et al. 2014) for the operators and gene copy numbers shown, we can
determine the most likely value �"AI = 4.5 kBT for LacI.



Figure S6. Hill function and MWC analysis of each induction profile, related to STAR
Methods. Data for each individual strain was fit to the general Hill function in Eq. (11). (A) strains
with O1 binding site, (B) strains with O2 binding site, and (C) strains with O3 binding site. Shaded
regions indicate the bounds of the 95% credible region.



Figure S7. Parameter values for the Hill equation fit to each individual titration, related
to STAR Methods. The resulting fit parameters from the Hill function fits of Fig. S6 are summarized.
The large parameter intervals for many of the O3 strains are due to the flatter induction profile (as seen
by its smaller dynamic range), and the ability for a large range of K and n values to describe the data.



Figure S8. A thermodynamic model coupled with a Hill analysis can characterize
induction, related to STAR Methods. Combining a thermodynamic model of simple repression
with the Hill function to characterize the repressor-inducer binding successfully characterizes the
induction profiles of all eighteen strains. As in the main text, data was only fit for the O2 R = 260
strain using Eqs. (12) and (13) and the parameters pmax

A
= 0.90+0.03

�0.01
, prange

A
= �0.90+0.02

�0.03
, n = 1.6+0.2

�0.1
,

and KD = 4+2

�1
⇥ 10�6 M. Shaded regions indicate bounds of the 95% credible region.



Figure S9. Global fit of dissociation constants, repressor copy numbers and binding
energies, related to STAR Methods. Theoretical predictions resulting from simultaneously fitting
the dissociation constants KA and KI , the six repressor copy numbers R, and the four repressor-DNA
binding energies �"RA using the entire data set from Fig. 5 as well as the microscopy data for the Oid
operator. Error bars of experimental data show the standard error of the mean (eight or more replicates)
and shaded regions denote the 95% credible region. Where error bars are not visible, they are smaller
than the point itself. For the Oid operator, all of the data points are shown since a smaller number of
replicates were taken. The shaded regions are significantly smaller than in Fig. 5 because this fit was
based on all data points, and hence the fit parameters are much more tightly constrained. The dashed
lines at 0 IPTG indicates a linear scale, whereas solid lines represent a log scale.



Figure S10. Key properties of induction profiles as predicted with a global fit using all
available data, related to STAR Methods. Data for the (A) leakiness, (B) saturation, and (C)
dynamic range are obtained from fold-change measurements in Fig. 5 in the absence and presence of
IPTG. All prediction curves were generated using the parameters listed in S5. Both the (D) [EC50] and
(E) effective Hill coefficient are inferred by individually fitting all parameters – KA, KI , R, �"RA – to
each operator-repressor pairing in Fig. 5(A)-(C) separately to Eq. (5) in order to smoothly interpolate
between the data points. Note that where error bars are not visible, this indicates that the error bars
are smaller than the point itself.



O1 15.3

Figure S11. O1 strain fold-change predictions based on strain-specific parameter
estimation of KA and KI , related to STAR Methods. Fold-change in expression is plotted as a
function of IPTG concentration for all strains containing an O1 operator. The solid points correspond to
the mean experimental value. The solid lines correspond to Eq. (5) using the parameter estimates of KA

and KI . Each row uses a single set of parameter values based on the strain noted on the left axis. The
shaded plots along the diagonal are those where the parameter estimates are plotted along with the data
used to infer them. Values for repressor copy number and operator binding energy are from Garcia and
Phillips (2011a). The shaded region on the curve represents the uncertainty from our parameter
estimates and reflect the 95% highest probability density region of the parameter predictions.



Figure S12. O2 strain fold-change predictions based on strain-specific parameter
estimation of KA and KI , related to STAR Methods. Fold-change in expression is plotted as a
function of IPTG concentration for all strains containing an O2 operator. The plots and data shown are
analogous to Fig. S11, but for the O2 operator.



O3 9.7

Figure S13. O3 strain fold-change predictions based on strain-specific parameter
estimation of KA and KI , related to STAR Methods. Fold-change in expression is plotted as a
function of IPTG concentration for all strains containing an O3 operator. The plots and data shown are
analogous to Fig. S11, but for the O3 operator. We note that when using the R = 22 O3 strain to
predict KA and KI , the large uncertainty in the estimates of these parameters (see Fig. 5(D)) leads to
correspondingly wider credible regions.



Figure S14. Dependence of leakiness, saturation, and dynamic range on the operator
binding energy and repressor copy number, related to STAR Methods. Increasing repressor
copy number or decreasing the repressor-operator binding energy suppresses gene expression and
decreases both the (A) leakiness and (B) saturation. (C) The dynamic range retains its shape but shifts
right as the repressor copy number increases. The peak in the dynamic range can be understood by
considering the two extremes for �"RA: for small repressor-operator binding energies, the leakiness is
small but the saturation increases with �"RA; for large repressor-operator binding energies the
saturation is near unity and the leakiness increases with �"RA, thereby decreasing the dynamic range.
Repressor copy number does not affect the maximum dynamic range (see Eq. (21)). Circles, diamonds,
and squares represent �"RA values for the O1, O2, and O3 operators, respectively, demonstrating the
expected values of the properties using those strains.



Figure S15. [EC50] and effective Hill coefficient depend strongly on repressor copy
number and operator binding energy, related to STAR Methods. (A) [EC50] values range
from very small and tightly clustered at weak operator binding energies (e.g. O3) to relatively large and
spread out for stronger operator binding energies (O1 and O2). (B) The effective Hill coefficient
generally decreases with increasing repressor copy number, indicating a flatter normalized response. The
maximum possible Hill coefficient is roughly 1.75 for all repressor-operator binding energies. Circles,
diamonds, and squares represent �"RA values for the O1, O2, and O3 operators, respectively.



Table S1. Primers used in this work, related to STAR Methods. Lower case sequences denote
homology to a chromosomal locus used for integration of the construct into the E. coli chromosome.
Uppercase sequences refer to the sequences used for PCR amplification.

Primer Sequence Comment

General sequencing primers:

pZSForwSeq2 TTCCCAACCTTACCAGAGGGC Forward primer for 3*1x-lacI

251F CCTTTCGTCTTCACCTCGA Forward primer for 25x+11-yfp

YFP1 ACTAGCAACACCAGAACAGCCC
Reverse primer for 3*1x-lacI

and 25x+11-yfp

Integration primers:

HG6.1 (galK )
gtttgcgcgcagtcagcgatatccattttcgcgaatccgg
agtgtaagaaACTAGCAACACCAGAACAGCC

Reverse primer for 25x+11-yfp
with homology to galK locus.

HG6.3 (galK )
ttcatattgttcagcgacagcttgctgtacggcaggcacc
agctcttccgGGCTAATGCACCCAGTAAGG

Forward primer for 25x+11-yfp
with homology to galK locus.

galK-control-upstream1 TTCATATTGTTCAGCGACAGCTTG To check integration.

galK-control-downstream1 CTCCGCCACCGTACGTAAATT To check integration.

HG11.1 (ybcN )
acctctgcggaggggaagcgtgaacctctcacaagacggc
atcaaattacACTAGCAACACCAGAACAGCC

Reverse primer for 3*1x-lacI with
homology to ybcN locus.

HG11.3 (ybcN )
ctgtagatgtgtccgttcatgacacgaataagcggtgtag
ccattacgccGGCTAATGCACCCAGTAAGG

Forward primer for 3*1x-lacI with
homology to ybcN locus.

ybcN-control-upstream1 AGCGTTTGACCTCTGCGGA To check integration.

ybcN-control-downstream1 GCTCAGGTTTACGCTTACGACG To check integration.



Table S2. E. coli strains used in this work, related to STAR Methods. Each strain contains
a unique operator-yfp construct for measurement of fluorescence and R refers to the dimer copy number
as measured by Garcia and Phillips (2011a).

Strain Genotype

O1, R = 0 HG105::galKhi25O1+11-yfp

O1, R = 22 HG104::galKhi25O1+11-yfp

O1, R = 60 HG105::galKhi25O1+11-yfp, ybcNhi3*1RBS1147-lacI

O1, R = 124 HG105::galKhi25O1+11-yfp, ybcNhi3*1RBS1027-lacI

O1, R = 260 HG105::galKhi25O1+11-yfp, ybcNhi3*1RBS446-lacI

O1, R = 1220 HG105::galKhi25O1+11-yfp, ybcNhi3*1RBS1-lacI

O1, R = 1740 HG105::galKhi25O1+11-yfp, ybcNhi3*1-lacI (RBS1L)

O2, R = 0 HG105::galKhi25O2+11-yfp

O2, R = 22 HG104::galKhi25O2+11-yfp

O2, R = 60 HG105::galKhi25O2+11-yfp, ybcNhi3*1RBS1147-lacI

O2, R = 124 HG105::galKhi25O2+11-yfp, ybcNhi3*1RBS1027-lacI

O2, R = 260 HG105::galKhi25O2+11-yfp, ybcNhi3*1RBS446-lacI

O2, R = 1220 HG105::galKhi25O2+11-yfp, ybcNhi3*1RBS1-lacI

O2, R = 1740 HG105::galKhi25O2+11-yfp, ybcNhi3*1-lacI (RBS1L)

O3, R = 0 HG105::galKhi25O3+11-yfp

O3, R = 22 HG104::galKhi25O3+11-yfp

O3, R = 60 HG105::galKhi25O3+11-yfp, ybcNhi3*1RBS1147-lacI

O3, R = 124 HG105::galKhi25O3+11-yfp, ybcNhi3*1RBS1027-lacI

O3, R = 260 HG105::galKhi25O3+11-yfp, ybcNhi3*1RBS446-lacI

O3, R = 1220 HG105::galKhi25O3+11-yfp, ybcNhi3*1RBS1-lacI

O3, R = 1740 HG105::galKhi25O3+11-yfp, ybcNhi3*1-lacI (RBS1L)

Oid, R = 0 HG105::galKhi25Oid+11-yfp

Oid, R = 22 HG104::galKhi25Oid+11-yfp

Oid, R = 60 HG105::galKhi25Oid+11-yfp, ybcNhi3*1RBS1147-lacI

Oid, R = 124 HG105::galKhi25Oid+11-yfp, ybcNhi3*1RBS1027-lacI

Oid, R = 260 HG105::galKhi25Oid+11-yfp, ybcNhi3*1RBS446-lacI

Oid, R = 1220 HG105::galKhi25Oid+11-yfp, ybcNhi3*1RBS1-lacI

Oid, R = 1740 HG105::galKhi25Oid+11-yfp, ybcNhi3*1-lacI (RBS1L)



Table S3. Instrument settings for data collection using the Miltenyi Biotec MACSQuant
flow cytometer, related to STAR Methods. All experimental measurements were collected using
these values.

Laser Channel Sensor Voltage

488 nm Forward-Scatter (FSC) 423V

488 nm Side-Scatter (SSC) 537V

488 nm Intensity (B1 Filter, 525/50nm) 790V

488 nm Trigger (debris threshold) 24.5V



Table S4. Key model parameters for induction of an allosteric repressor, related to
STAR Methods.

Parameter Description

c Concentration of the inducer

KA,KI Dissociation constant between an inducer and the repressor in the active/inactive state

�"AI The difference between the free energy of repressor in the inactive and active states

�"P Binding energy between the RNAP and its specific binding site

�"RA,�"RI Binding energy between the operator and the active/inactive repressor

n Number of inducer binding sites per repressor

P Number of RNAP

RA, RI , R Number of active/inactive/total repressors

pA = RA
R Probability that a repressor will be in the active state

pbound Probability that an RNAP is bound to the promoter of interest, assumed to be proportional to gene expression

fold-change Ratio of gene expression in the presence of repressor to that in the absence of repressor

F Free energy of the system

NNS The number of non-specific binding sites for the repressor in the genome

� = 1
kBT The inverse product of the Boltzmann constant kB and the temperature T of the system



Table S5. Global fit of all parameter values using the entire data set. Related to Figure 5
and STAR Methods. In addition to fitting the repressor inducer dissociation constants KA and KI

as was done in the text, we also fit the repressor DNA binding energy �"RA as well as the repressor
copy numbers R for each strain. The middle columns show the previously reported values for all �"RA

and R values, with ± representing the standard deviation of three replicates. The right column shows
the global fits from this work, with the subscript and superscript notation denoting the 95% credible
region. Note that there is overlap between all of the repressor copy numbers and that the net difference
in the repressor-DNA binding energies is less than 1 kBT . The logarithms k̃A = � log KA

1M
and

k̃I = � log KI
1M

of the dissociation constants were fit for numerical stability.

Reported Values (Garcia and Phillips 2011a) Global Fit

k̃A � �5.33+0.06

�0.05

k̃I � 0.31+0.05

�0.06

KA � 205+11

�12
µM

KI � 0.73+0.04

�0.04
µM

R22 22± 4 20+1

�1

R60 60± 20 74+4

�3

R124 124± 30 130+6

�6

R260 260± 40 257+9

�11

R1220 1220± 160 1191+32

�55

R1740 1740± 340 1599+75

�87

O1 �"RA �15.3± 0.2 kBT �15.2+0.1

�0.1
kBT

O2 �"RA �13.9± 0.2 kBT �13.6+0.1

�0.1
kBT

O3 �"RA �9.7± 0.1 kBT �9.4+0.1

�0.1
kBT

Oid �"RA �17.0± 0.2 kBT �17.7+0.2

�0.1
kBT
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A Induction of Simple Repression with Multiple Promoters or
Competitor Sites

We made the choice to perform all of our experiments using strains in which a single copy of our simple
repression construct had been integrated into the chromosome. This stands in contrast to the methods
used by a number of other studies (Oehler et al. 1994; Setty et al. 2003; Oehler et al. 2006; Daber et al.
2009; Daber et al. 2011; Vilar and Saiz 2013; Shis et al. 2014; Sochor 2014), in which reporter constructs
are placed on plasmid, meaning that the number of constructs in the cell is not precisely known. It is also
common to express repressor on plasmid to boost its copy number, which results in an uncertain value for
repressor copy number. Here we show that our treatment of the MWC model has broad predictive power
beyond the single-promoter scenario we explore experimentally, and indeed can account for systems
in which multiple promoters compete for the repressor of interest. Additionally, we demonstrate the
importance of having precise control over these parameters, as they can have a significant effect on the
induction profile.

A.1 Chemical Potential Formulation to Calculate Fold-Change

In this section, we discuss a simple repression construct which we generalize in two ways from the scenario
discussed in the text. First, we will allow the repressor to bind to NS identical specific promoters whose
fold-change we are interested in measuring, with each promoter containing a single repressor binding site
(NS = 1 in the main text). Second, we consider NC identical competitor sites which do not regulate the
promoter of interest, but whose binding energies are substantially stronger than non-specific binding
(NC = 0 in the main text). As in the main text, we assume that the rest of the genome contains NNS

non-specific binding sites for the repressor. As in Appendix , we can write the fold-change Eq. (2) in the
grand canonical ensemble as

fold-change =
1

1 + �re���"RA
, (A1)

where �r is the fugacity of the repressor and �"RA represents the energy difference between the repressor’s
binding affinity to the specific operator of interest relative to the repressor’s non-specific binding affinity
to the rest of the genome.

We now expand our definition of the total number of repressors in the system, Rtot, so that it is
given by

Rtot = RS +RNS +RC , (A2)

where RS , RNS , and RC represent the number of repressors bound to the specific promoter, a non-specific
binding site, or to a competitor binding site, respectively. The value of RS is given by

RS = NS

�re���"RA

1 + �re���"RA
, (A3)

where NS is the number of specific binding sites in the cell. The value of RNS is similarly give by

RNS = NNS

�r

1 + �r

, (A4)

where NNS is the number of non-specific sites in the cell (recall that we use NNS = 4.6⇥ 106 for E. coli),
and RC is given by

RC = NC

�re���"C

1 + �re���"C
, (A5)

where NC is the number of competitor sites in the cell and �"C is the binding energy of the repressor to
the competitor site relative to its non-specific binding energy to the rest of the genome.

To account for the induction of the repressor, we replace the total number of repressors Rtot in
Eq. (A2) by the number of active repressors in the cell, pA(c)Rtot. Here, pA denotes the probability that
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the repressor is in the active state (Eq. (4)),

pA(c) =

⇣
1 + c

KA

⌘n

⇣
1 + c

KA

⌘n

+ e���"AI

⇣
1 + c

KI

⌘n . (A6)

Substituting in Eqs. (A3)-(A5) into the modified Eq. (A2) yields the form

pA(c)Rtot = NS

�re���"RA

1 + �re���"RA
+NNS

�r

1 + �r

+NC

�re���"C

1 + �re���"C
. (A7)

For systems where the number of binding sites NS , NNS , and NC are known, together with the binding
affinities �"RA and �"C , we can solve numerically for �r and then substitute it into Eq. (A1) to obtain a
fold-change at any concentration of inducer c. In the following sections, we will theoretically explore the
induction curves given by Eq. (A7) for a number of different combinations of simple repression binding
sites, thereby predicting how the system would behave if additional specific or competitor binding sites
were introduced.

A.2 Variable Repressor Copy Number (R) with Multiple Specific Binding
Sites (NS > 1)

In the the main text, we consider the induction profiles of strains with varying R but a single, specific
binding site NS = 1 (see Fig. 5). Here we predict the induction profiles for similar strains in which R
is varied, but NS > 1, as shown in Fig. A1. The top row shows induction profiles in which NS = 10
and the bottom row shows profiles in which NS = 100, assuming three different choices for the specific
operator binding sites given by the O1, O2, and O3 operators. These values of NS were chosen to mimic
the common scenario in which a promoter construct is placed on either a low or high copy number
plasmid. A few features stand out in these profiles. First, as the magnitude of NS surpasses the number
of repressors R, the leakiness begins to increase significantly, since there are no longer enough repressors
to regulate all copies of the promoter of interest. Second, in the cases where �"RA = �15.3 kBT for
the O1 operator or �"RA = �13.9 kBT for the O2 operator, the profiles where NS = 100 are notably
sharper than the profiles where NS = 10, and it is possible to achieve dynamic ranges approaching 1.
Finally, it is interesting to note that the profiles for the O3 operator where �"RA = �9.7 kBT are nearly
indifferent to the value of NS .

A.3 Variable Number of Specific Binding Sites NS with Fixed Repressor
Copy Number (R)

The second set of scenarios we consider is the case in which the repressor copy number R = 260 is held
constant while the number of specific promoters NS is varied (see Fig. A2). Again we see that leakiness
is increased significantly when NS > R, though all profiles for �"RA = �9.7 kBT exhibit high leakiness,
making the effect less dramatic for this operator. Additionally, we find again that adjusting the number
of specific sites can produce induction profiles with maximal dynamic ranges. In particular, the O1 and
O2 profiles with �"RA = �15.3 and �13.9 kBT , respectively, have dynamic ranges approaching 1 for
NS = 50 and 100.

A.4 Competitor Binding Sites

An intriguing scenario is presented by the possibility of competitor sites elsewhere in the genome. This
serves as a model for situations in which a promoter of interest is regulated by a transcription factor
that has multiple targets. This is highly relevant, as the majority of transcription factors in E. coli have
at least two known binding sites, with approximately 50 transcription factors having more than ten
known binding sites (Rydenfelt et al. 2014b; Schmidt et al. 2015). If the number of competitor sites
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Figure A1. Induction with variable R and multiple specific binding sites. Induction profiles
are shown for strains with variable R and �"RA = �15.3, �13.9, or �9.7 kBT . (A-C) The number of
specific sites, NS , is held constant at 10 as R and �"RA are varied. (D-F) NS is held constant at 100 as
R and �"RA are varied. These situations mimic the common scenario in which a promoter construct is
placed on either a low or high copy number plasmid.

Figure A2. Induction with variable specific sites and fixed R. Induction profiles are shown for
strains with R = 260 and (A) �"RA = �15.3 kBT , (B) �"RA = �13.9 kBT , or (C) �"RA = �9.7 kBT .
The number of specific sites NS is varied from 1 to 500.

and their average binding energy is known, however, they can be accounted for in the model. Here, we
predict the induction profiles for strains in which R = 260 and NS = 1, but there is a variable number
of competitor sites NC with a strong binding energy �"C = �17.0 kBT . In the presence of such a

A5



strong competitor, when NC > R the leakiness is greatly increased, as many repressors are siphoned into
the pool of competitor sites. This is most dramatic for the case where �"RA = �9.7 kBT , in which it
appears that no repression occurs at all when NC = 500. Interestingly, when NC < R the effects of the
competitor are not especially notable.

Figure A3. Induction with variable competitor sites, a single specific site, and fixed R.
Induction profiles are shown for strains with R = 260, Ns = 1, and (A) �"RA = �15.3 kBT for the O1
operator, (B) �"RA = �13.9 kBT for the O2 operator, or (C) �"RA = �9.7 kBT for the O3 operator.
The number of specific sites, NC , is varied from 1 to 500. This mimics the common scenario in which a
transcription factor has multiple binding sites in the genome.

A.5 Properties of the Induction Response

As discussed in the main body of the paper, our treatment of the MWC model allows us to predict
key properties of induction responses. Here, we consider the leakiness, saturation, and dynamic range
(see Fig. 1) by numerically solving Eq. (A7) in the absence of inducer, c = 0, and in the presence of
saturating inducer c ! 1. Using Eq. (A6), the former case is given by

Rtot

1

1 + e���"AI
= NS

�re���"RA

1 + �re���"RA
+NNS

�r

1 + �r

+NC

�re���"C

1 + �re���"C
, (A8)

whereupon substituting in the value of �r into Eq. (A1) will yield the leakiness. Similarly, the limit of
saturating inducer is found by determining �r from the form

Rtot
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1 + e���"AI

⇣
KA
KI
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�re���"RA

1 + �re���"RA
+NNS

�r

1 + �r

+NC

�re���"C

1 + �re���"C
. (A9)

In Fig. A4 we show how the leakiness, saturation, and dynamic range vary with R and �"RA in
systems with NS = 10 or NS = 100. An inflection point occurs where NS = R, with leakiness and
dynamic range behaving differently when R < NS than when R > NS . This transition is more dramatic
for NS = 100 than for NS = 10. Interestingly, the saturation values consistently approach 1, indicating
that full induction is easier to achieve when multiple specific sites are present. Moreover, dynamic range
values for O1 and O2 strains with �"RA = �15.3 and �13.9 kBT approach 1 when R > NS , although
when NS = 10 there is a slight downward dip owing to saturation values of less than 1 at high repressor
copy numbers.

In Fig. A5 we similarly show how the leakiness, saturation, and dynamic range vary with R and �"RA

in systems with NS = 1 and multiple competitor sites NC = 10 or NC = 100. Each of the competitor
sites has a binding energy of �"C = �17.0 kBT . The phenotypic profiles are very similar to those for
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Figure A4. Phenotypic properties of induction with multiple specific binding sites. The
leakiness (A, D), saturation (B, E), and dynamic range (C, F) are shown for systems with number of
specific binding sites NS = 10 (A-C) or NS = 100 (D-F). The dashed vertical line indicates the point at
which NS = R.

multiple specific sites shown in Fig. A4, with sharper transitions at R = NC due to the greater binding
strength of the competitor site. This indicates that introducing competitors has much the same effect on
the induction phenotypes as introducing additional specific sites, as in either case the influence of the
repressors is dampened when there are insufficient repressors to interact with all of the specific binding
sites.

This section of the appendix gives a quantitative analysis of the nuances imposed on induction
response in the case of systems involving multiple gene copies as are found in the vast majority of
studies on induction. In these cases, the intrinsic parameters of the MWC model get entangled with the
parameters describing gene copy number.
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Figure A5. Phenotypic properties of induction with a single specific site and multiple
competitor sites. The leakiness (A, D), saturation (B, E), and dynamic range (C, F) are shown for
systems with a single specific binding site NS = 1 and a number of competitor sites NC = 10 (A-C) or
NC = 100 (D-F). All competitor sites have a binding energy of �"C = �17.0 kBT . The dashed vertical
line indicates the point at which NC = R.
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B Single-Cell Microscopy

In this section, we detail the procedures and results from single-cell microscopy verification of our flow
cytometry measurements. Our previous measurements of fold-change in gene expression have been
measured using bulk-scale Miller assays (Garcia and Phillips 2011a) or through single-cell microscopy
(Brewster et al. 2014). In this work, flow cytometry was an attractive method due to the ability to screen
through many different strains at different concentrations of inducer in a short amount of time. To verify
our results from flow cytometry, we examined two bacterial strains with different repressor-DNA binding
energies (�"RA) of �13.9 kBT and �15.3 kBT with R = 260 repressors per cell using fluorescence
microscopy and estimated the values of the parameters KA and KI for direct comparison between the
two methods. For a detailed explanation of the Python code implementation of the processing steps
described below, please see this paper’s GitHub repository. An outline of our microscopy workflow can
be seen in Fig. A6.

B.1 Strains and Growth Conditions

Cells were grown in an identical manner to those used for measurement via flow cytometry (see Methods).
Briefly, cells were grown overnight (between 10 and 13 hours) to saturation in rich media broth (LB)
with 100µg ·mL�1 spectinomycin in a deep-well 96 well plate at 37�C. These cultures were then diluted
1000-fold into 500µL of M9 minimal medium supplemented with 0.5% glucose and the appropriate
concentration of the inducer IPTG. Strains were allowed to grow at 37�C with vigorous aeration for
approximately 8 hours. Prior to mounting for microscopy, the cultures were diluted 10-fold into M9
glucose minimal medium in the absence of IPTG. Each construct was measured using the same range of
inducer concentration values as was performed in the flow cytometry measurements (between 100 nM
and 5mM IPTG). Each condition was measured in triplicate in microscopy whereas approximately ten
measurements were made using flow cytometry.

B.2 Imaging Procedure

During the last hour of cell growth, an agarose mounting substrate was prepared containing the
appropriate concentration of the IPTG inducer. This mounting substrate was composed of M9 minimal
medium supplemented with 0.5% glucose and 2% agarose (Life Technologies UltraPure Agarose, Cat.
No. 16500100). This solution was heated in a microwave until molten followed by addition of the IPTG
to the appropriate final concentration. This solution was then thoroughly mixed and a 500µL aliquot
was sandwiched between two glass coverslips and was allowed to solidify.

Once solid, the agarose substrates were cut into approximately 10mm⇥ 10mm squares. An aliquot of
one to two microliters of the diluted cell suspension was then added to each pad. For each concentration
of inducer, a sample of the autofluorescence control, the �lacI constitutive expression control, and the
experimental strain was prepared yielding a total of thirty-six agarose mounts per experiment. These
samples were then mounted onto two glass-bottom dishes (Ted Pella Wilco Dish, Cat. No. 14027-20)
and sealed with parafilm.

All imaging was performed on a Nikon Ti-Eclipse inverted fluorescent microscope outfitted with a
custom-built laser illumination system and operated by the open-source MicroManager control software
(Edelstein et al. 2014). The YFP fluorescence was imaged using a CrystaLaser 514 nm excitation laser
coupled with a laser-optimized (Semrock Cat. No. LF514-C-000) emission filter.

For each sample, between fifteen and twenty positions were imaged allowing for measurement of
several hundred cells. At each position, a phase contrast image, an mCherry image, and a YFP image
were collected in that order with exposures on a time scale of ten to twenty milliseconds. For each
channel, the same exposure time was used across all samples in a given experiment. All images were
collected and stored in ome.tiff format. All microscopy images are available on the CaltechDATA
online repository under DOI: 10.22002/D1.229.
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Figure A6. Experimental workflow for single-cell microscopy. For comparison with the flow
cytometry results, the cells were grown in an identical manner to those described in the main text. Once
cells had reached mid to late exponential growth, the cultures were diluted and placed on agarose
substrates and imaged under 100⇥ magnification. Regions of interest representing cellular mass were
segmented and average single-cell intensities were computed. The means of the distributions were used
to compute the fold-change in gene expression.

B.3 Image Processing

B.3.1 Correcting Uneven Illumination

The excitation laser has a two-dimensional gaussian profile. To minimize non-uniform illumination of a
single field of view, the excitation beam was expanded to illuminate an area larger than that of the camera
sensor. While this allowed for an entire field of view to be illuminated, there was still approximately
a 10% difference in illumination across both dimensions. This nonuniformity was corrected for in
post-processing by capturing twenty images of a homogeneously fluorescent plastic slide (Autofluorescent
Plastic Slides, Chroma Cat. No. 920001) and averaging to generate a map of illumination intensity at
any pixel IYFP. To correct for shot noise in the camera (Andor iXon+ 897 EMCCD), twenty images
were captured in the absence of illumination using the exposure time used for the experimental data.
Averaging over these images produced a map of background noise at any pixel Idark. To perform the
correction, each fluorescent image in the experimental acquisition was renormalized with respect to these
average maps as

Iflat =
I � Idark

IYFP � Idark
hIYFP � Idarki, (A10)

where Iflat is the renormalized image and I is the original fluorescence image. An example of this
correction can be seen in Fig. A7.

B.3.2 Cell Segmentation

Each bacterial strain constitutively expressed an mCherry fluorophore from a low copy-number plasmid.
This served as a volume marker of cell mass allowing us to segment individual cells through edge detection
in fluorescence. We used the Marr-Hildreth edge detector (Marr and Hildreth 1980) which identifies edges
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Figure A7. Correction for uneven illumination. A representative image of the illumination
profile of the 512 nm excitation beam on a homogeneously fluorescent slide is shown in the left panel.
This is corrected for using equation Eq. (A10) and is shown in the right panel.

by taking the second derivative of a lightly Gaussian blurred image. Edges are identified as those regions
which cross from highly negative to highly positive values or vice-versa within a specified neighborhood.
Bacterial cells were defined as regions within an intact and closed identified edge. All segmented objects
were then labeled and passed through a series of filtering steps.

To ensure that primarily single cells were segmented, we imposed area and eccentricity bounds. We
assumed that single cells projected into two dimensions are roughly 2µm long and 1µm wide, so that
cells are likely to have an area between 0.5µm2 and 6µm. To determine the eccentricity bounds, we
assumed that the a single cell can be approximated by an ellipse with semi-major (a) and semi-minor
(b) axis lengths of 0.5µm and 0.25µm, respectively. The eccentricity of this hypothetical cell can be
computed as

eccentricity =

s

1�
✓
b

a

◆2

, (A11)

yielding a value of approximately 0.8. Any objects with an eccentricity below this value were not considered
to be single cells. After imposing both an area (Fig. A8(A)) and eccentricity filter (Fig. A8(B)), the
remaining objects were considered cells of interest (Fig. A8(C)) and the mean fluorescence intensity of
each cell was extracted.

B.3.3 Calculation of Fold-Change

Cells exhibited background fluorescence even in the absence of an expressed fluorophore. We corrected
for this autofluorescence contribution to the fold-change calculation by subtracting the mean YFP
fluorescence of cells expressing only the mCherry volume marker from each experimental measurement.
The fold-change in gene expression was therefore calculated as

fold-change =
hIR>0i � hIautoi
hIR=0i � hIautoi

, (A12)
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Figure A8. Segmentation of single bacterial cells. (A) Objects were selected if they had an
eccentricity greater than 0.8 and an area between 0.5µm2 and 6µm2. Highlighted in blue are the
regions considered to be representative of single cells. The black lines correspond to the empirical
cumulative distribution functions for the parameter of interest. (B) A representative final segmentation
mask is shown in which segmented cells are depicted in cyan over the phase contrast image.

where hIR>0i is the mean fluorescence intensity of cells expressing LacI repressors, hIautoi is the mean
intensity of cells expressing only the mCherry volume marker, and hIR=0i is the mean fluorescence
intensity of cells in the absence of LacI. These fold-change values were very similar to those obtained
through flow cytometry and were well described using the thermodynamic parameters used in the main
text. With these experimentally measured fold-change values, the best-fit parameter values of the model
were inferred and compared to those obtained from flow cytometry.

B.4 Parameter Estimation and Comparison

To confirm quantitative consistency between flow cytometry and microscopy, the parameter values of
KA and KI were also estimated from three biological replicates of IPTG titration curves obtained by
microscopy for strains with R = 260 and operators O1 and O2. Fig. A9(A) shows the data from these
measurements (orange circles) and the ten biological replicates from our flow cytometry measurements
(blue circles), along with the fold-change predictions from each inference. In comparison with the values
obtained by flow cytometry, each parameter estimate overlapped with the 95% credible region of our
flow cytometry estimates, as shown in Fig. A9(B). Specifically, these values were KA = 142+40

�34
µM

and KI = 0.6+0.1

�0.1
µM from microscopy and KA = 149+14

�12
µM and KI = 0.57+0.03

�0.02
µM from the flow

cytometry data. We note that the credible regions from the microscopy data shown in Fig. A9(B) are
much broader than those from flow cytometry due to the fewer number of replicates performed.
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Figure A9. Comparison of measured fold-change between flow cytometry and single-cell
microscopy. (A) Experimentally measured fold-change values obtained through single-cell microscopy
and flow cytometry are shown as white filled and solid colored circles, respectively. Solid and dashed
lines indicate the predicted behavior using the most likely parameter values of KA and KI inferred from
flow cytometry data and microscopy data, respectively. The red and blue plotting elements correspond
to the different operators O1 and O2 with binding energies �"RA of �13.9 kBT and �15.3 kBT ,
respectively (Garcia and Phillips 2011a). (B) The marginalized posterior distributions for KA and KI

are shown in the top and bottom panel, respectively. The posterior distribution determined using the
microscopy data is wider than that computed using the flow cytometry data due to a smaller fig
collection of data sets (three for microscopy and ten for flow cytometry).
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C Fold-Change Sensitivity Analysis

In Fig. 5 we found that the width of the credible regions varied widely depending on the repressor copy
number R and repressor operator binding energy �"RA. More precisely, the credible regions were much
narrower for low repressor copy numbers R and weak binding energy �"RA. In this section, we explain
how this behavior comes about. We focus our attention on the maximum fold-change in the presence of
saturating inducer given by Eq. (7). While it is straightforward to consider the width of the credible
regions at any other inducer concentration, Fig. 5 shows that the credible region are widest at saturation.

The width of the credible regions corresponds to how sensitive the fold-change is to the fit values of
the dissociation constants KA and KI . To be quantitative, we define

� fold-changeKA
⌘ fold-change(KA,K

fit

I
)� fold-change(Kfit

A
,Kfit

I
), (A13)

the difference between the fold-change at a particular KA value relative to the best-fit dissociation
constant Kfit

A
= 139⇥ 10�6 M. For simplicity, we keep the inactive state dissociation constant fixed at its

best-fit value Kfit

I
= 0.53⇥ 10�6 M. A larger difference � fold-changeKA

implies a wider credible region.
Similarly, we define the analogous quantity

� fold-changeKI
= fold-change(Kfit

A
,KI)� fold-change(Kfit

A
,Kfit

I
) (A14)

to measure the sensitivity of the fold-change to KI at a fixed Kfit

A
. Fig. A10 shows both of these quantities

in the limit c ! 1 for different repressor-DNA binding energies �"RA and repressor copy numbers R.
See our GitHub repository for the code that reproduces these plots.

To understand how the width of the credible region scales with �"RA and R, we can Taylor expand
the difference in fold-change to first order, � fold-changeKA

⇡ @ fold-change
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derivative has the form
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Similarly, the Taylor expansion � fold-changeKI
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(A16)
From Eqs. (A15) and (A16), we find that both � fold-changeKA

and � fold-changeKI
increase in

magnitude with R and decrease in magnitude with �"RA. Accordingly, we expect that the O3 strains
(with the least negative �"RA) and the strains with the smallest repressor copy number will lead to
partial derivatives with smaller magnitude and hence to tighter credible regions. Indeed, this prediction
is carried out in Fig. A10.

Lastly, we note that Eqs. (A15) and (A16) enable us to quantify the scaling relationship between the
width of the credible region and the two quantities R and �"RA. For example, for the O3 strains, where
the fold-change at saturating inducer concentration is ⇡ 1, the right-most term in both equations which
equals the fold-change squared is roughly 1. Therefore, we find that both @ fold-change

@KA
and @ fold-change

@KI

scale linearly with R and e���"RA . Thus the width of the R = 22 strain will be roughly 1/1000 as large
as that of the R = 1740 strain; similarly, the width of the O3 curves will be roughly 1/1000 the width of
the O1 curves.
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Figure A10. Determining how sensitive the fold-change values are to the fit values of the
dissociation constants.(A) The difference � fold-changeKA

in fold change when the dissociation
constant KA is slightly offset from its best-fit value KA = 139+29

�22
⇥ 10�6 M, as given by Eq. (A13).

Fold-change is computed in the limit of saturating inducer concentration (c ! 1, see Eq. (7)) where the
credible regions in Fig. 5 are widest. The O3 strain (�"RA = �9.7 kBT ) is about 1/1000 as sensitive as
the O1 operator to perturbations in the parameter values, and hence its credible region is roughly
1/1000 as wide. All curves were made using R = 260. (B) As in Panel (A), but plotting the sensitivity
of fold-change to the KI parameter relative to the best-fit value KI = 0.53+0.04

�0.04
⇥ 10�6 M. Note that

only the magnitude, and not the sign, of this difference describes the sensitivity of each parameter.
Hence, the O3 strain is again less sensitive than the O1 and O2 strains. (C) As in Panel (A), but
showing how the fold-change sensitivity for different repressor copy numbers. The strains with lower
repressor copy number are less sensitive to changes in the dissociation constants, and hence their
corresponding curves in Fig. 5 have tighter credible regions. All curves were made using
�"RA = �13.9 kBT . (D) As in Panel (C), the sensitivity of fold-change with respect to KI is again
smallest (in magnitude) for the low repressor copy number strains.
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D Applicability of Theory to the Oid Operator Sequence

In addition to the native operator sequences (O1, O2, and O3) considered in the main text, we were also
interested in testing our model predictions against the synthetic Oid operator. In contrast to the other
operators, Oid is one base pair shorter in length (20 bp), is fully symmetric, and is known to provide
stronger repression than the native operator sequences considered so far. While the theory should be
similarly applicable, measuring the lower fold-changes associated with this YFP construct was expected
to be near the sensitivity limit for our flow cytometer, due to the especially strong binding energy of Oid
(�"RA = �17.0 kBT ) (Garcia et al. 2011b). Accordingly, fluorescence data for Oid were obtained using
microscopy, which is more sensitive than flow cytometry. Appendix B gives a detailed explanation of
how microscopy measurements were used to obtain induction curves.

We follow the approach of the main text and make fold-change predictions based on the parameter
estimates from our strain with R = 260 and an O2 operator. These predictions are shown in Fig. A11(A),
where we also plot data taken in triplicate for strains containing R = 22, 60, and 124, obtained by
single-cell microscopy. We find that the data are systematically below the theoretical predictions.
We also considered our global fitting approach (see Appendix ) to see whether we might find better
agreement with the observed data. Interestingly, we findthat the majority of the parameters remain
largely unchanged, but our estimate for the Oid binding energy �"RA is shifted to �17.7 kBT instead
of the value �17.0 kBT found by Garcia and Phillips (2011a). In Fig. A11(B) we again plot the Oid
fold-change data but with theoretical predictions using the new estimate for the Oid binding energy from
our global fit and find substantially better agreement.

Figure A11. Predictions of fold-change for strains with an Oid binding sequence versus
experimental measurements with different repressor copy numbers. (A) Experimental data
is plotted against the parameter-free predictions that are based on our fit to the O2 strain with R = 260.
Here we use the previously measured binding energy �"RA = �17.0 kBT (Garcia and Phillips 2011a).
(B) The same experimental data is plotted against the best-fit parameters using the complete O1, O2,
O3, and Oid data sets to infer KA, KI , repressor copy numbers, and the binding energies of all
operators (see Appendix ). Here the major difference in the inferred parameters is a shift in the binding
energy for Oid from �"RA = �17.0 kBT to �"RA = �17.7 kBT , which now shows agreement between
the theoretical predictions and experimental data. Shaded regions from the theoretical curves denote the
95% credible region. These are narrower in Panel (B) because the inference of parameters was performed
with much more data, and hence the best-fit values are more tightly constrained. Individual data points
are shown due to the small number of replicates. The dashed lines at 0 IPTG indicate a linear scale,
whereas solid lines represent a log scale.

Fig. A12 shows the cumulative data from Garcia and Phillips (2011a) and Brewster et al. (2014), as
well as our data with c = 0µM, which all measured fold-change for the same simple repression architecture
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utilizing different reporters and measurement techniques. We find that the binding energies from the
global fit, including �"RA = �17.7 kBT , compare reasonably well with all previous measurements.

Figure A12. Comparison of fold-change predictions based on binding energies from
Garcia and Phillips and those inferred from this work. Fold-change curves for the different
repressor-DNA binding energies �"RA are plotted as a function of repressor copy number when IPTG
concentration c = 0. Solid curves use the binding energies determined from Garcia and Phillips (2011a),
while the dashed curves use the inferred binding energies we obtained when performing a global fit of
KA, KI , repressor copy numbers, and the binding energies using all available data from our work.
Fold-change measurements from our experiments (outlined circles) Garcia and Phillips (2011a) (solid
circles), and Brewster et al. (2014) (diamonds) show that the small shifts in binding energy that we infer
are still in agreement with prior data. Note that only a single flow cytometry data point is shown for
Oid from this study, since the R = 60 and R = 124 curves from Fig. A11 had extremely low fold-change
in the absence of inducer (c = 0) so as to be indistinguishable from autofluorescence, and in fact their
fold-change values in this limit were negative and hence do not appear on this plot.
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E Applications to Other Regulatory Architectures

In this section, we discuss how the theoretical framework presented in this work is sufficiently general to
include a variety of regulatory architectures outside of simple repression by LacI. We begin by noting
that the exact same formula for fold-change given in Eq. (5) can also describe corepression. We then
demonstrate how our model can be generalized to include other architectures, such as a coactivator
binding to an activator to promote gene expression. In each case, we briefly describe the system and
describe its corresponding theoretical description. For further details, we invite the interested reader to
read Bintu et al. (2005b) and Marzen et al. (2013).

E.1 Corepression

Consider a regulatory architecture where binding of a transcriptional repressor occludes the binding of
RNAP to the DNA. A corepressor molecule binds to the repressor and shifts its allosteric equilibrium
towards the active state in which it binds more tightly to the DNA, thereby decreasing gene expression
(in contrast, an inducer shifts the allosteric equilibrium towards the inactive state where the repressor
binds more weakly to the DNA). As in the main text, we can enumerate the states and statistical weights
of the promoter and the allosteric states of the repressor. We note that these states and weights exactly
match Fig. 2 and yield the same fold-change equation as Eq. (5),

fold-change ⇡
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where c now represents the concentration of the corepressor molecule. Mathematically, the difference
between these two architectures can be seen in the relative sizes of the dissociation constants KA and
KI between the inducer and repressor in the active and inactive states, respectively. The corepressor
is defined by KA < KI , since the corepressor favors binding to the repressor’s active state; an inducer
must satisfy KI < KA, as was found in the main text from the induction data (see Fig. 4). Much as was
performed in the main text, we can make some predictions about the how the response of a corepressor.
In Fig. A13(A), we show how varying the repressor copy number R and the repressor-DNA binding
energy �"RA influence the response. We draw the reader’s attention to the decrease in fold-change as
the concentration of effector is increased.

E.2 Activation

We now turn to the case of activation. While this architecture was not studied in this work, we wish to
demonstrate how the framework presented here can be extended to include transcription factors other
than repressors. To that end, we consider a transcriptional activator which binds to DNA and aids in
the binding of RNAP through energetic interaction term "AP . Note that in this architecture, binding
of the activator does not occlude binding of the polymerase. Binding of a coactivator molecule shifts
its allosteric equilibrium towards the active state (KA < KI), where the activator is more likely to be
bound to the DNA and promote expression. Enumerating all of the states and statistical weights of this
architecture and making the approximation that the promoter is weak generates a fold-change equation
of the form
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where A is the total number of activators per cell, c is the concentration of a coactivator molecule, �"AA

is the binding energy of the activator to the DNA in the active allosteric state, and "AP is the interaction
energy between the activator and the RNAP. Unlike in the cases of induction and corepression, the
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fold-change formula for activation includes terms from when the RNAP is bound by itself on the DNA
as well as when both RNAP and the activator are simultaneously bound to the DNA. Fig. A13(B)
explores predictions of the fold-change in gene expression by manipulating the activator copy number,
DNA binding energy, and the polymerase-activator interaction energy. Note that with this activation
scheme, the fold-change must necessarily be greater than one. An interesting feature of these predictions
is the observation that even small changes in the interaction energy (< 0.5 kBT ) can result in dramatic
increase in fold-change.

As in the case of induction, the Eq. (A18) is straightforward to generalize. For example, the relative
values of KI and KA can be switched such that KI < KA in which the secondary molecule drives the
activator to assume the inactive state represents induction of an activator. While these cases might
be viewed as separate biological phenomena, mathematically they can all be described by the same
underlying formalism.

Figure A13. Representative fold-change predictions for allosteric corepression and
activation. (A) Contrary to the case of induction described in the main text, addition of a corepressor
decreases fold-change in gene expression. The left and right panels demonstrate how varying the values
of the repressor copy number R and repressor-DNA binding energy �"RA, respectively, change the
predicted response profiles. (B) In the case of inducible activation, binding of an effector molecule to an
activator transcription factor increases the fold-change in gene expression. Note that for activation, the
fold-change is greater than 1. The left and center panels show how changing the activator copy number
A and activator-DNA binding energy �"AA alter response, respectively. The right panel shows how
varying the polymerase-activator interaction energy "AP alters the fold-change. Relatively small
perturbations to this energetic parameter drastically changes the level of activation and plays a major
role in dictating the dynamic range of the system.
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