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Mobile animal groups provide some of the most compelling examples of

self-organization in the natural world. While field observations of songbird

flocks wheeling in the sky or anchovy schools fleeing from predators have

inspired considerable interest in the mechanics of collective motion, the

challenge of simultaneously monitoring multiple animals in the field has

historically limited our capacity to study collective behaviour of wild

animal groups with precision. However, recent technological advancements

now present exciting opportunities to overcome many of these limitations.

Here we review existing methods used to collect data on the movements

and interactions of multiple animals in a natural setting. We then survey

emerging technologies that are poised to revolutionize the study of collective

animal behaviour by extending the spatial and temporal scales of inquiry,

increasing data volume and quality, and expediting the post-processing

of raw data.

This article is part of the theme issue ‘Collective movement ecology’.
1. Introduction
Group living is common in animals and directly influences important biological

processes such as resource acquisition, predator avoidance and social learning

[1]. In addition to the biological and ecological significance of collective

behaviour, the spectacle of coordinated animal groups navigating the environ-

ment (e.g. flocking birds, marching locusts, schooling fish) continues to drive

an intense interest in understanding the mechanics behind these impressive

displays. The past several decades have marked a revolution in scientific under-

standing of the causes and consequences of collective behaviour. This is due, in

large part, to a feedback between high-precision measurements of the behaviours

of animal groups, and mathematical and computational models that seek to re-

create these behaviours. In 1987, Reynolds [2] took an unlikely but germinal

step in this direction when he showed, via computer simulations, that complex col-

lective motion resembling the flocking, herding and schooling behaviours of

animals could result from simple, local rules of interaction among individuals.

In the following decades, researchers extended these early models to describe

larger groups of individuals with more sophisticated and biologically justifiable

interaction rules [3–5]. Simultaneously, advancements in videography and com-

puter vision have made it possible to empirically test some of these models in the

laboratory [6–9]. This feedback between mathematical and computational models

and high-resolution data from laboratory experiments has defined an era of
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http://dx.doi.org/10.1098/rstb/373/1746
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Figure 1. Technology is changing our view of collective behaviour, offering a variety of different perspectives on animal movement and interactions. High-resolution
satellite imaging, fixed-wing or multicopter photography allows imaging groups of animals as they move across the landscape or migrate great distances. Stationary
or semi-stationary imaging techniques allow high-definition tracking of large groups, potentially in three dimensions, using standard cameras, imaging sonar or
infrared cameras. Bio-logging tags that sample location, behaviour, activity, or interactions with conspecifics provide a continuous stream of data from tagged
individuals, even in otherwise inaccessible locations or when moving across large distances.
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hypothesis-driven research and facilitated the development of a

mechanistic understanding of collective decision-making in

animal groups.

Extending this theoretical–empirical feedback to include

group-living species in their natural environments is a critical

step toward understanding how the dynamics of collective

behaviour relate to broader ecological and evolutionary

questions. Recent advances in field-deployable tracking tech-

nologies (e.g. stationary imaging techniques, bio-loggers and

remote sensing; figure 1) present new opportunities for

conducting field-based studies of collective behaviour at ecolo-

gically meaningful spatio-temporal scales. By studying social

interactions in wild animal groups, researchers are starting

to identify the social and ecological mechanisms that drive

collective behaviours in a broader range of animal species, to

quantitatively describe interaction rules at the individual

level that drive movement decisions at the group level, and

to empirically assess the ecological significance of collective

movement in the wild [10–12]. In addition, we are poised

to explore collective processes that cannot be studied in the

laboratory, such as long distance collective migration,

predator–prey interactions in large, group-living species, and

information transfer across the landscape.

This prospectus aims to provide an overview of existing

and emerging technologies used to collect data on movements,

behaviour and interactions within animal groups in the field

and highlights the challenges and opportunities presented by

each. We have omitted a discussion of the extensive literature

on collective behaviour of wild social insects, as well as the lit-

erature on human groups, primarily because the techniques

used in these systems often differ substantially from techniques
used to study other social animals. Our aim is to survey current

and state of the art technologies used to study social animals in

the wild, as well as to look towards the kinds of studies these

technologies will make possible in the future.

2. Stationary field imaging techniques
High-resolution stationary imaging has been one of the most

widely used methods for studying the collective behaviour

of wild animals. Modern imaging methods include three-

dimensional (3D) videography, high-speed single-camera and

multi-camera videography, thermal infrared imaging, and

imaging sonar. All of these methods are capable of recording

high-resolution data on both animals and environmental

features within the camera field of view, facilitating the study

of social and ecological interactions on a fine spatial scale.

In addition, many stationary cameras have the advantage of

being compatible with a large, external power supply. This can

extend the duration and frequency of data collection, making

stationary cameras appropriate for a wide range of taxa, habitats

and movement modes (i.e. from disparate individuals to large,

cohesive groups). However, the inherent limitation of imaging

from a fixed location may reduce the utility of stationary cameras

in complex environments or areas of low animal density. In this

section, we provide a selective review of some of these technol-

ogies and address challenges that arise when using stationary

cameras to study collective behaviour of animals in the field.

(a) Imaging large groups
Stationary cameras have provided important opportunities to

make precise measurements of collective behaviour in the



Figure 2. Still frame from a video sequence showing movement tracks of
individual fish filmed from a stationary camera array in shallow water [16].
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wild. For example, Cavagna et al. [13] used carefully calibrated

cameras placed atop a building to record individual positions

and movements of starlings (Sturnus vulgaris) in large flocks.

Similarly, Ginelli et al. [14] used digital cameras placed atop a

tower to record the behaviours of large groups of domestic

sheep (Ovis aries) in outdoor enclosures, and Theriault et al.
[15] reconstructed flight paths of groups of wild Brazilian

free-tailed bats (Tadarida brasiliensis) and cliff swallows

(Petrochelidon pyrrhonota) flying through volumes of up to

7000 m3. In all of these studies, researchers chose imaging

equipment and configurations to strike a balance between

achieving a wide field of view and maintaining sufficient resol-

ution to allow tracking of individual movements. When it is not

possible to film animals from a distance, or high-resolution

images are required, multiple synchronized cameras may

be used to increase the total field of view (e.g. an array of

downward looking cameras in shallow water [16]; figure 2).

When designing a camera set-up, it is important to consider

the speeds and spatial scale of the movements of the study

animal, in addition to the method by which data will be ana-

lysed. Many studies of collective behaviour make inferences

by studying covariance among positions, speed or accelera-

tions of tracked animals. This type of analysis requires tracks

that are long enough to encompass the behavioural sequences

of interest, but also replicated enough to detect correlations in

the presence of noise. Using stationary cameras positioned far

from the group of interest might make it possible to observe

animals for longer periods of time before they leave the

camera frame, but this typically comes at the cost of lower res-

olution, which can lead to increased tracking noise, tracking

errors and lower quality tracks. Therefore, it is worth perform-

ing power analyses on simulated data in advance of data

collection to determine what kind of track resolution, track

lengths and replication will be needed to detect phenomena

of interest. In some cases, the best strategy may be to dispense

with tracking individuals altogether, and instead to focus on

studying the detailed behaviours of individuals when they

are present at a particular site using fixed-location cameras

(e.g. [16]) or other means (e.g. passive integrated transponder

(PIT) tag readers sensu [17]).
(b) Tracking animal positions from field imagery
More often than not, image-based analyses of collective behav-

iour involve tracking animal positions from one image to the

next. This has become a highly streamlined task in laboratory

studies (but see Hong et al. [18] and Berman et al. [19] for more
challenging extensions), where behavioural arenas can be config-

ured to minimize occlusions (i.e. instances where one animal

passes between another individual and the camera), and to facili-

tate the use of inexpensive recording equipment and off-the-shelf

tracking software (see Dell et al. [20] for a review).

Tracking animals in field images with complex backgrounds

and objects in the foreground is far more challenging. Moreover,

the need to simultaneously track many individuals that may

frequently occlude one another makes studying collective

behaviour using field imagery particularly difficult. However,

in some field settings, one or more of these complications can

be avoided. For example, Attanasi et al. [21] achieved high-

precision 3D reconstructions of individual fly (the midge

Cladotanytarsus atridorsum) trajectories by filming swarms in

front of a suspended dark cloth background. In many cases, how-

ever, modifying the background will be either impossible or

undesirable, and occlusions are almost inevitablewhen manyani-

mals interact in the same place at the same time. Alternatively,

there are several technologies that have made it possible to extract

high-precision tracks from field imagery, even when conditions

are far from optimal. The most common of these are 3D imaging

and specialized filtering, detection and tracking algorithms.

Three-dimensional information can help resolve ambigu-

ities introduced when an individual passes in front of an

object with similar colour and texture. For example, in a labora-

tory study, Hong et al. [18] used 3D cameras to record pairs of

laboratory mice interacting in an experimental chamber. The

authors were able to use the camera’s depth sensor to separate

mice with low-contrast coat colours from the background and

to resolve occlusion events in which mice passed over one

another. Three-dimensional cameras remove some of the

need for careful calibrations and multi-camera reconstructions;

however, commercially available 3D cameras currently have

relatively narrow working range. Depending on the camera

model, depth information is generally only reliable for objects

that are located within a few metres of the camera lens [18],

although stereo camera systems with larger apertures have

been developed for tracking animals at longer ranges [18,22].

Moreover, the most common 3D technologies measure the

depth of each pixel in an image by projecting an infrared

beam and measuring the return time of that signal, limiting

these tools to environments where emissions in the infrared

range are not strongly attenuated. This limits the utility of

3D cameras in aquatic environments, although researchers

have recently developed technologies that can improve the

performance of 3D cameras for underwater use [23].

Heterogeneous, dynamic lighting is another challenge com-

monly encountered in field imagery, particularly in shallow

water systems, where refraction of sunlight through surface

waves results in rapidly changing illumination patterns on the

substrate, known as ‘sunflicker’ [24]. Sunflicker makes object

tracking challenging because features that are useful for detect-

ing an individual in one image may yield poor performance in

the next if local light conditions change. Dynamic lighting also

renders background subtraction—a standard technique in

which a background image is subtracted from recorded

images to retain only moving objects—far less useful.

When it is not possible to avoid sunflicker altogether, it may

still be possible to correct for dynamic lighting through video

post-processing. Modern methods for correcting local dynamic

light patterns in video were adapted from algorithms orig-

inally developed to produce smooth transitions between

images in photo mosaics such as those created by cell phone
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apps [24]. De-flickering techniques apply similar methods to

smooth the severe local gradients in pixel intensity produced

when nearby regions of an image are illuminated to different

degrees by sunflicker. Though these techniques have been

applied to underwater imagery with promising results

[24,25], in our experience, they can require significant tuning.

More recent methods for automatically tuning de-flickering

filters may dramatically reduce the need for manual tuning,

making it more feasible to correct lighting in long sequences

of images from field video [26].

Finally, cameras that record spectral bands outside of the

visible range (e.g. thermal) or acoustic imaging systems such

as acoustic sonar can be useful as either primary or secondary

imaging devices. For example, Wu and co-workers [27] used

thermal imaging cameras to reconstruct large groups of free-

ranging bats in nocturnal footage. Benoit-Bird & Gilly [28]

used split-beam sonar to track movements of individual

jumbo squid (Dosidicus gigas) in the Gulf of California, which

allowed them to measure the trajectory, velocity, tortuosity,

and depth of multiple individuals at once. Other studies have

used sonar to observe synchronous diving and foraging behav-

iour of cetaceans [29,30], and collective hunting and evasion in

fish shoals [12,31]. Thermal and sonar imaging techniques are

particularly exciting because they extend the range of environ-

mental conditions where collective behaviour can be studied to

include low-light environments previously hidden from tra-

ditional videography techniques. However, both spatial and

temporal resolution are currently limited for these methods.

(c) Postural tracking and fine-scale behaviours
Technological developments will undoubtedly continue to

improve the usefulness of visual imagery for studying collective

behaviour. Among the most exciting of these is the develop-

ment of algorithms that automatically extract more detailed

information about individuals than body or head centroid

locations. These include segmentation schemes, which may

be able to provide postural information about individuals. For

example, fully convolutional networks—relatively new tools

from deep learning—appear to be well suited to semantic seg-

mentation of complex images in which objects of interest can

have variable size and shape, and be partially occluded [32].

Algorithms that explicitly model body orientation, structure

and limb orientation using multi-camera reconstructions [33]

or 3D cameras [18,34] also appear promising. These and similar

methods will allow researchers to access information about

individuals that is not contained in the time series of positions

typically collected from tracked field imagery. Access to fea-

tures like body posture and gait could fundamentally deepen

what we can learn from visual imagery. For example, in

dense schools or swarms, postural tracking can allow one to

reconstruct the visual information available to each individual

within the group (see laboratory studies by Strandburg-Peshkin

et al. [9] and Rosenthal et al. [35]). Information about body pos-

ture, limb motion, and morphology may make it possible to

apply new quantitative methods for characterizing behavioural

states of individuals [18,19,36,37] and to better understand how

social interactions might influence these states [38].
3. Remote sensing
While stationary cameras have facilitated some of the earliest

field-based studies of collective animal behaviour, remote
imaging platforms now offer a promising opportunity to

extend these investigations to organisms moving across increas-

ingly large spatial scales ([39]; figure 3). In addition, the

flexibility of remote operation makes it possible to track specific

animals or entire groups of interest while executing experimen-

tal manipulations under natural conditions. Together, these

capabilities afford an opportunity to expand the scope of theor-

etical and empirical insights to be gained from studying

collective motion to a broad range of natural systems.
(a) Unmanned aerial vehicles
Unmanned aerial vehicles (UAVs) currently provide the most

affordable and flexible imaging platforms for obtaining an

aerial perspective in the field. In addition to greatly expanding

the simultaneous field of view afforded by stationary cameras,

UAVs provide the ability to adjust camera positioning on the

fly and at distances up to several kilometres from the operator.

This capability facilitates truly non-invasive filming of collective

animal behaviour (when following ’best practices’ outlined in

[40,41]) and when combined with computer vision techniques

(e.g. [20,39,42]; figure 4 and electronic supplementary material,

ESM1 and ESM2) or bio-loggers (e.g. [10]; figure 5), can be

used to track the fine-scale movements (e.g. individual positions,

trajectories and turning angles) of entire groups over large dis-

tances and time scales. For example, Torney et al. [39] used

UAV videography and computer vision to measure individual

trajectories and quantify information transfer across large

groups of migrating caribou.

In addition, a growing commercial market is continually

increasing the utility and affordability of UAVs by offering

a wide range of airframe designs, payload capacities, and

technical configurations to suit the needs and budget of most

academic research programmes [44,45]. Alternatively, a thriving

DIY community offers limitless opportunities for researchers

needing bespoke solutions at low cost. Given this range of

equipment configurations and capabilities, specific recommen-

dations will depend on the question of interest, focal species,

budget and logistical constraints of the field site, and there

are several technical and political considerations to be made

before establishing any UAV-based research programme for

wildlife (see Anderson & Gaston [44] for a more thorough

treatment of these topics).

The inability to film animals through dense canopy or turbid

water, or to resolve smaller species (less than about 30 kg) at

appropriate altitude is currently the largest limitation of UAVs

for studies of collective animal behaviour. However, thermal

infrared and increasingly compact, high-resolution cameras

are rapidly expanding future possibilities for filming under

these conditions. Limited battery life presents an additional

challenge, though significant gains stand to be made from utiliz-

ing alternative airframes. For example, fixed-wing UAVs afford

significantly longer flight times than compact, multi-rotor

designs (i.e. up to 2 days for the largest fixed-wing versus less

than 1 h for most multi-rotor systems [44]). However, a multi-

rotor system affords the advantage of hovering in place without

the need to circle continuously as required by a fixed-wing air-

craft. Regardless of design, all aerial platforms bring a suite of

post-processing challenges such as image stabilization, correc-

tion for oblique filming angles, changing light and

environmental conditions, plus many of the limitations outlined

previously for processing footage from field cameras (see

‘Stationary field imaging techniques’ (section 2) above).



(a) (c)(b)

Figure 3. Remotely sensed imagery affords a unique opportunity to empirically study the ecology of collective motion in large animal systems. For example, satellite
(a) and aerial (b,c) imagery of wildebeest herds (top row) reveals aggregation patterns that are structurally similar to those previously described for smaller taxa
(bottom row): (a) vacuole (fish), (b) cruise (insects), (c) wave front (slime mould). Remote sensing now enables hypotheses regarding the form and function of
these repeated patterns to be experimentally tested under natural conditions and for a wider range of taxa than ever before. Images were reproduced with the
following permissions. Top row: (a) Google Earth, & 2017 Digital Globe; (b) ’River crossing’ by Colin J. Torney, Elaine Ferguson and Lacey Hughey; (c) ’Wave front’
by Lacey Hughey. Bottom row: (a) iStock.com/Connah/, cropped from original; (b) ‘A column of Matabele ants streaming towards a termite mound’ by Piotr
Naskrecki & 2013, cropped from original; (c) ‘Physarum polycephalum (Physaridae)’ by Norbert Hülsmann, used under CCBY-NC-SA-2.0 (https://creativecom-
mons.org/licenses/by-nc-sa/2.0/), cropped and rotated from original.
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In addition, many low-cost commercial systems can pro-

duce stimuli perceived to be threatening by many species

(i.e. motor noise [46] or semblance of an aerial predator

[47]), though impacts may be reduced by modifying equip-

ment or methodology [40,41]. Furthermore, there is some

evidence that UAVs may cause physiological changes in

study animals (i.e. increased heart rate [46]), which may not

manifest as behavioural changes, but could confound results

if not properly accounted for. Though all of these issues are

addressed with increasing efficiency in new versions of hard-

ware and software, there is no replacement for thoughtfully

developed ‘best practices’ for UAV use around wildlife

[40,41]. Alternatively, non-motorized platforms (i.e. kites,

aerostats and stratospheric balloons [48]) offer some advan-

tages over traditional UAVs, including reduced noise,

significantly longer flight times and increased payloads. Of

course, these gains come at the cost of manoeuvrability,

though this may be partially mediated by use of a remote

controlled camera gimbal, or increased altitude.

Finally, depending on the study area, UAVs may present

a multitude of legal challenges, which will generally require

advance permitting and licensing at a minimum, and partial

to total restriction of flights at a maximum. Thus, it is essen-

tial to work with local stakeholders and law enforcement
agencies during the early phases of project planning to clarify

procedures and ensure compliance prior to beginning work.
(b) Satellites
While UAVs offer unparalleled affordability, flexibility and

resolution for imaging animal groups from an aerial perspec-

tive, there have been notable advances in satellite remote

sensing technology that will facilitate truly ‘landscape-scale’

studies of collective behaviour in the very near future [49].

Commercial satellite companies maintain the largest collec-

tion of archived images with the resolution appropriate for

identifying individual animals (30 cm [50] to 50 cm [50,51]),

but the random and disparate temporal distribution of cover-

age generally limits the use of archived images for studies of

collective movement. While there is some promise for using

new, commissioned images to capture time series of large

animal groups moving across the landscape, this will require

future increases in satellite availability for civilian use

coupled with a significant decrease in cost.

Alternatively, the advent of ‘CubeSats’ (i.e. miniaturized

satellite constellations) has recently disrupted the traditional

market for high-resolution satellite imagery by providing low-

cost access to high-resolution still imagery (80 cm–5 m) and

https://creativecommons.org/licenses/by-nc-sa/2.0/
https://creativecommons.org/licenses/by-nc-sa/2.0/


Figure 4. Still frame from a UAV video sequence demonstrating ability to
automatically track unique individuals and species (e.g. zebra (15 – 19, 21,
22, 24, 25, 29, 31, 33) in red versus wildebeest (13, 20, 23, 28) in blue)
across video frames (sensu [39,43]). Still frame was reproduced with
permission from Colin J. Torney.
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video (1 m, up to 90 s at 30 fps) collected at daily or near-daily

intervals (e.g. [52–54]). Obtaining such high-resolution, high-

frequency satellite imagery presents a first opportunity to

study entire herds of large animals (e.g. migratory wildebeest,

caribou, livestock) moving across hundreds of square kilo-

metres without disturbance from observers on the ground. In

addition, this truly multi-scale perspective will afford research-

ers the opportunity to better understand how social and

environmental processes interact across environmentally rel-

evant spatial scales and facilitate the study of collective

behaviour in more natural systems than ever before (figure 3).
4. Bio-loggers
Animal-mounted sensors (or bio-loggers) present another

promising and complementary approach to image-based

studies of collective behaviour. Such on-board sensors—

including GPS, accelerometers, magnetometers, pressure

sensors and acoustic recorders, among others—are opening

up new directions in a range of biological disciplines, as they

allow data to be collected continuously and directly at the

location of the study animal, irrespective of changes in accessi-

bility or visibility of the animal, and without need for

re-identifying the same individual repeatedly. For studying

collective behaviour in particular, on-board sensors allow

animal position, movement and behaviour to be monitored

with increasing resolution and across a range of habitats and

contexts [55,56]. In addition, many tags now include multiple

types of sensors integrated with one another, making it poss-

ible to test how the movements, vocalizations, behaviours

and social interactions of freely-moving animals influence

one another [57].

However, the utility of bio-loggers is limited by the need to

affix sensors to each monitored animal, a process that usually

requires capture (for collars, backpacks or glue attachment) or

close range physical interaction (for suction cup or dart attach-

ments). Additionally, the need for animals to carry devices

imposes strong weight and size restrictions, thereby limiting

the sensor payload and battery size, and resulting in trade-

offs between sensor sampling rate, duty cycling, and battery

life. Retrieving data can also present challenges. In some

cases, it may be possible to download data remotely from
tags, while in others, tags must be retrieved (either through

recapturing animals or by having a remote drop-off system)

to offload data. Another complication that is especially relevant

to studies of collective behaviour is the need to deploy many

devices simultaneously. If instrumentation happens over an

extended period of time, tags need a pre-programmed start

time to maximize simultaneous recording time. Additionally,

the internal clocks of independent tags will drift over time,

and thus tags that do not include a GPS sensor will need a

system for intermittently synchronizing tags. Lastly, on-board

sensors are typically expensive, so deploying many tags may

become cost-prohibitive for some research projects. Despite

these challenges, continued advances in technology have

reduced the size and cost of on-board sensors while also increas-

ing their spatial and temporal resolution. Owing to these

advances, their use in behavioural biology is rapidly growing,

and they are becoming an increasingly powerful tool for study-

ing collective animal behaviour. We explore these advances and

associated challenges in greater detail below.
(a) Monitoring location
Modern GPS tags are capable of monitoring animal locations

at sub-second rates, and with spatial resolution that can

achieve sub-metre precision. These advances mean that data

can now be collected at the temporal and spatial scales

necessary for studying fine-scale social interactions within

groups [55]. Several recent studies have deployed GPS tags

on all or most individuals within animal groups to study col-

lective movement dynamics, including work on pigeons

(Columba livia domestica) [58], baboons (Papio anubis) [59],

domestic sheep [60], African wild dogs (Lycaon pictus)

[60,61] and domestic dogs (Canis lupus familiaris) [62]

(see figure 4 for an example with baboons).

Collecting movement data via GPS tags has a number of

advantages. First and foremost, it is possible to monitor

animals in areas where visual observation is impossible.

Moreover, animals can be tracked over multiple spatial scales

(from local interactions within groups to long-range collective

migrations [63]) and with an adjustable temporal rate. Such

high-density data can allow estimation of individual inter-

action rules and leadership [64], differences in relative

position within a group that are related to individual differ-

ences or personality traits [65,66], or tracking fine-scale

interactions with the local environment [10,63]. GPS sensors

require a relatively large amount of power, but recent low-

power GPS tags now allow for multi-week continuous (1 Hz

position updates) tracking of medium-sized animals such as

baboons [59]. However, this increased spatial or temporal

resolution may not be high enough to resolve fine-scale move-

ments and social interactions for some systems and contexts.

Therefore, these methods are most appropriate for groups

that are dispersed over at least tens of metres, or for addressing

interactions that take place over such distances. In contrast to

overhead imaging, there are no limits to maximum separation

distance so it is more feasible to study social dynamics of fluid

groups on the move. For smaller animals or more compact

group interactions, high-resolution imaging from either

stationary cameras or UAVs is likely a better approach to

differentiating interactions.

For marine animals or other systems where a significant

component of movement takes place vertically, cheap and

power-efficient pressure sensors can monitor the depth of a



Figure 5. Combining bio-logging with UAV imagery enables investigation of how the environment shapes collective movement in wild animal groups. Coloured lines
show trajectories for the majority of baboons within a single troop (obtained using GPS collars), and background image shows 3D point cloud rendering of their
habitat (obtained from UAV imagery). White lines show scale (each line extends 50 m). Adapted from [10].
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tagged animal. Tags with pressure sensors generally store and

transmit summary data or store raw depth measurements. This

information can provide data on dive and foraging behaviour,

and can be merged with Argos positions (i.e. GPS locations

from Argos satellite system) to provide detailed data on fora-

ging ecology of deep-diving animals [67]. Although it is

possible to use pressure sensors to quantify dive initiation

and other characteristics of leadership, so far this technology

has only been used to a limited extent for studies of collective

behaviour [68]. This is in part due to problems with separating

lack of coordination from lack of horizontal cohesion, and in

part due to inevitable clock drift between independently

sampling tags. Novel approaches to solve these two issues

are therefore needed, such as synchronization pulses or incor-

poration of GPS or fast-lock GPS technology with accurate

timing information.

(b) Detecting presence, proximity and social networks
Even when precise positions are not known, information on the

presence or proximity of animals to one another, or to fixed

geographical locations, can still provide a useful quantification

of social structure and interactions. Such methods can be par-

ticularly important for species whose size, environment or

behaviour makes continuous monitoring impractical or

impossible, or for processes that span longer time scales,

such as social learning. A range of active and passive transpon-

der systems have been used to obtain such data so far, and are

thought to be increasingly important to future work [69].

Passive integrated transponder (PIT) tags are extremely

small, lightweight and inexpensive devices that carry a

unique barcode and are typically implanted internally in ani-

mals. PIT tags do not require an internal power source so

they can usually remain with an animal for its entire lifetime

and are well suited to automated set-ups. While PIT tag sys-

tems do not monitor position continuously, they are well

suited to systems in which animals spend time at specific

locations such as nests and foraging patches, or to monitor

their movements through specific movement corridors such

as rivers (e.g. during migration). Arrays of transponder readers

can also give more detailed information on animal positions
and movement directions [70], and co-occurrences at specific

locations can be used to infer social structure [71]. A limitation

of PIT tags is that their detection range is very short, typically

on the order of a few metres or less. In the context of collective

behaviour, PIT tags have been used to monitor decision-

making, social network structure, and information transfer in

populations of wild birds [17,72,73], bats (Myotis bechsteinii)
[74] and house mice (Mus musculus) [75], among others.

Active transponder tags, including VHF radio beacons or

acoustic transponders that contain their own power source

for signal generation, can provide a longer-range alternative,

though these also require deployed receiving stations. Several

lakes have recently been instrumented with relatively dense

arrays of acoustic receivers to track active transponders

implanted in multiple species of fish, allowing a detailed per-

spective into interactions both within and between species in

an ecosystem [69,76].

Proximity sensors are active transponder tags that can

themselves receive information from other transponders and

store information on time and ID of encountered tags [77].

Tags can be tuned either to record signals above a certain

threshold or to record signals and signal strength, where

the latter can be used to infer encounter distance [78].

These tags have been used to automatically map association

patterns and investigate social learning in free-ranging New

Caledonian crows (Corvus moneduloides) [79] and to investigate

social dynamics of zebras (Equus quagga) [80] and sharks

(Carcharhinus galapagensis) [81,82].
(c) Estimating body orientation, activity and behaviour
A full understanding of how animal groups coordinate move-

ment will require data, not just on where animals are, but on

the sensory information they are taking in and the behaviours

that they are engaging in. Recent laboratory studies of animal

groups have begun to incorporate sensory information, such

as the visual field of each individual in a school of fish

[9,35,83], to build more predictive and biologically motivated

models of collective motion [84]. Onboard inertial sensors

such as accelerometers, magnetometers and gyroscopes
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provide an opportunity to obtain detailed behavioural infor-

mation for animal groups in the wild, even when they cannot

be directly observed by humans, and may also provide the

means for tracking body orientation and gaze direction of ani-

mals within moving groups. Both accelerometers and

magnetometers are commonly used in bio-logging tags since

they are compact, cheap and power efficient [85,86]. Gyro-

scopes have some advantages when measuring energetics

and body posture, but have seen only limited use in bio-logging

tags owing to their higher power consumption, drift and com-

plex data processing [87].

Tri-axial accelerometers measure both static accelera-

tion (caused by the gravitational field of the Earth) and

dynamic acceleration (caused by acceleration of the animal

and thereby the sensor itself ) along three dimensions.

Depending on sensor placement, dynamic acceleration can

be related to the movement of the animal itself, and various

proxies for energy expenditure or activity level using

tri-axial accelerometers have been developed as a result

(ODBA [88]; veDBA [89]; MSA [90]). Accelerometers may

also be used to estimate body orientation, often quantified

as the pitch, roll and heading of an animal. To measure

all three axes of body orientation, an accelerometer and

magnetometer are needed, and magnetic heading must be

corrected for the magnetic inclination and declination at the

study site. Magnetometers are seldom used by themselves

because they cannot fully specify the orientation of the tag

owing to rotational ambiguity around the magnetic field

vector. However, with triaxial accelerometers and

magnetometers, time series of body orientation can be used

to quantify the gait of an animal over time [91]. Packages com-

bining accelerometers and magnetometers with gyroscopes

provide a more robust quantification of both energetics and

gait [87,92]. See Martı́n López et al. [87] for a comparison

between these approaches.

Since accelerometers and magnetometers are more power

efficient, they can generally be sampled much faster (typically

tens to thousands of times per second) than GPS tracking

systems, which are constrained by battery power. Thus,

using inertial sensors there is increasing potential for using

time-series analysis to estimate movement influence and

social interactions between simultaneously tagged animals at

higher temporal resolution using inertial sensors than is poss-

ible using GPS sensors. Inertial sensors also offer the possibility

of identifying specific behaviours (e.g. foraging events or prey

capture success [93,94]) and behavioural states [95–97]. To do

this, a ground-truthed dataset consisting of time-synchronized

behavioural observations is typically collected during a subset

of sensor recordings. Based on this training dataset, machine

learning techniques can then be used to develop an automatic

behavioural classifier, allowing behaviours to be identified in

the absence of direct observation [93].
(d) Improving positional data using inertial sensors
Integrating data from sensors with different spatial or temporal

resolutions can help improve tracking accuracy. For example,

by merging high sample rate inertial data from accelerometers,

magnetometers and/or gyroscopes with low sample rate,

larger-error position data from GPS tags, it is possible to deter-

mine the orientation of an animal, then combine this

information with estimates of speed and integrate across

velocity vectors to reconstruct movement tracks [98]. Such
‘dead-reckoning’ methods (reviewed in [99]) can help establish

movement tracks without directly measuring positions [100]

and can also be combined with GPS, ARGOS or acoustic local-

ization position data to improve the temporal resolution of

movement tracks [101,102]. Dead-reckoning methods are also

critical for species that live in areas where GPS reception is

poor, such as marine environments and densely forested

areas. However, it is important to note that errors in the

inferred positions of animals will accumulate over the length

of a track and rapidly limit the accuracy of dead-reckoned pos-

ition estimates, whereas estimated orientation will keep the

same accuracy throughout. Thus, it is better to base studies

of movement influence between animals on orientation

estimates rather than dead-reckoned tracks.
(e) Interactions beyond proximity
Collective behaviours are mediated by a variety of passive

and active information flows between individuals in a group.

Behaviours other than movement, such as vocalizations and

gestures, are key to the coordination of movement in many

species (primates [103,104]; meerkats (Suricata suricatta) [105];

birds [106]; elephants (Loxodonta africana) [107]; dolphins

(Tursiops truncatus) [108]). Animal-mounted cameras, sound

recorders or accelerometers provide a number of options for

measuring interactions between individuals in the field, and

linking these to individual-level movement decisions recorded

simultaneously by GPS or other sensors.

Perhaps the most intuitive option is the use of still or video

imaging from the perspective of the study animal itself

[109,110]. Animal-borne video can be used to identify or vali-

date behaviours, especially as recorded by other lower cost

sensors (e.g. accelerometers), and has been used extensively

to understand foraging ecology of many species; it also has

great potential for contributing to our understanding of collec-

tive behaviour. Cameras can map encounters or social

interactions with conspecifics that occur out of sight of obser-

vers [111–113]. While technology is continuously improving,

video cameras consume more power than many other sensors,

analysis is often labour intensive, and it may be difficult to get a

field of view that can capture all interactions of interest.

The last 15 years have seen an increase in animal-borne

sound recorders, especially for research on cetaceans

[114–116], but also on terrestrial mammals [117], birds and

bats (e.g. [57,118]). Since acoustic communication is a funda-

mental means of information transfer in many systems,

acoustic recorders that can pick up these signals from

tagged animals open a wide range of possibilities for under-

standing collective behaviours, from active mediation of

group cohesion to negotiation of consensus decisions.

While manual processing of acoustic data can be time-

consuming, automated detection and discrimination algorithms

can speed up analysis dramatically [118–120]. One potential

advantage over camera tags is that a single acoustic sensor can

record sounds from the tagged animal, incoming sounds from

other nearby conspecifics, and sounds from other sources in

the environment [57]. However, for many species, it can be a sig-

nificant challenge to correctly discriminate vocalizations of the

tagged individual from nearby conspecifics, and accurate differ-

entiation of tagged animal vocalizations can be difficult to

demonstrate without a ground-truthed dataset. Stereo tags

may help since one can use time differences between channels

to estimate a bearing to an incoming sound [121], thereby
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more easily identifying sounds from the tagged animal

[122,123]. Additionally, high sample rate accelerometers may

be able to pick up on body vibrations associated with sound

production in both marine [124] and terrestrial [125] systems.

While bio-loggers that monitor the orientation and move-

ment of animals are only beginning to be employed in

studies of collective animal behaviour [95,126], their use

offers great promise for achieving a deeper understanding of

the mechanics governing collective motion. Such data will

also provide valuable information about the context in which

group coordination occurs, and will allow individual beha-

viours—not just locations—to be incorporated into models of

collective movement. At the same time, the ability to collect

such detailed data opens up a new set of challenges, as integrat-

ing multiple streams of raw sensor data to obtain biologically

relevant information is a difficult analytical and computational

task, though software to facilitate this process is gradually

becoming available [127]. Furthermore, since instrumentation

of animals is both costly and time intensive, future studies

that combine animal bio-logging methods with other tools,

such as visual tracking of group members from overhead cam-

eras, may facilitate studies of collective behaviour while

building on the strengths of each method.
5. Discussion
Deeper knowledge of the ecology and evolution of collective

behaviour is important both for the advancement of basic

scientific understanding and for the conservation of funda-

mental ecosystem processes that occur in communities

around the world [1,128–130]. The technologies discussed

above offer new, and in many cases, more efficient tools for

studying the dynamics of these processes in the wild. Each

of these approaches comes with their own advantages and

caveats, and thus the choice of study approach will depend

heavily on the problem, especially the spatio-temporal scale

at which data are needed.

In general, both stationary and remotely sensed imagery

afford theadvantage of simultaneously capturing high-resolution

data on environmental features and animal movement, but

differ in the range of spatio-temporal scales that can be cap-

tured. For example, fixed cameras provide high-definition

(and, in some cases, 3D) imaging at a local scale that is con-

strained by the field of view of the (often immobile) camera,

and thus are most suitable for monitoring movement inter-

actions of small, less mobile animals, or for monitoring

interactions in specific areas (e.g. fish moving around a reef,

birds foraging in a tree). For larger, group-living or highly

mobile animals, UAVs offer a promising alternative. The

choice of airframe design will depend on the scale of inquiry,

with larger aggregations or longer time periods necessitating

fixed-wing UAVs which fly higher and cannot hover, but

which reach extended flight times of hours to days compared

with the tens of minutes of commercial multi-copters. For

landscape-scale questions, high-resolution satellite imaging

is becoming an increasingly accessible option that may

allow tracking of mass movements of larger animals over

time scales of weeks to months, albeit at low temporal

scales that do not allow tracking of individual animals with-

out the coordinated use of bio-loggers or stationary cameras.

In contrast to field imaging techniques, bio-logging tags

offer the ability to track unique individuals over time scales
of weeks to years, which can be a significant advantage

when studying highly mobile [10,58] or highly fluid social

groups. In addition, bio-loggers afford the advantage of

incorporating environmental sensors such as cameras or

microphones that can record social interactions in situ and

allow researchers to test mechanistic hypotheses for the col-

lective decision-making processes observed in a broad

range of taxa. Finally, it may be advantageous to think

about bridging these approaches, for example by combining

fine-scale habitat mapping from UAV with high-resolution

individual-level tracking of animals [10] (figure 4).

While we have emphasized the new research opportunities

these methods will facilitate, the methods themselves should

not be viewed as a panacea, or as a replacement for more

traditional techniques of field biology. As Hebblewhite &

Hayden [131] point out, higher-resolution datasets do not

necessarily lead to increased understanding of animal ecology.

Additionally, one should critically evaluate the true costs of

data collection (i.e. handling wildlife to apply sensors, or

processing and analysing large amounts of data) before adopt-

ing any new techniques for research. It is also important to note

that there is no replacement for the deep intuition and novel

questions born from directly observing animal behaviour in

the field. Thus, these new technologies should be viewed as

complementary approaches to more traditional field methods

and encourage deeper understanding of classic ecological

theories through cross-discipline collaborations.

Moving forward, there are a number of promising avenues

for extending collective behaviour research in both theoretical

and applied directions through experimental, field-based

enquiry. Much of what we currently know about collective

animal behaviour, both in the laboratory and in the wild,

comes from observational studies rather than experimental

manipulations. With the aid of mathematical and compu-

tational models, these studies have shed considerable light on

the interaction rules that generate phenomena such as coordi-

nated motion (e.g. [6,8,11,132,133]) and collective predator

evasion (e.g. [12,35]). However, it is becoming increasingly

clear that hypotheses about the causes and consequences

of collective behaviour should be tested further through

manipulative experiments in a natural setting. Several field

studies (e.g. [16,134]) have already begun to move in this direc-

tion, and recent technological advancements will enable

researchers to build on these early efforts by combining the

power of modern animal tracking technology with traditional

methods for studying behaviour in the field. For example,

acoustic playbacks (e.g. [105,134–136]), food manipulation

(e.g. [73,137]) and predator threat stimuli [16] can be used in

combination with any of the imaging or bio-logging technol-

ogies discussed above to experimentally test hypotheses

about how information is transmitted among individuals

and how that information affects collective dynamics across

natural landscapes.

In addition to these new applications, the technologies

reviewed here hold tremendous potential to extend the study

of collective behaviour to contexts where it has seldom been

studied in the past. Questions about what selects for and main-

tains collective migration, how collective foraging might

influence nutrient dynamics and ecosystem processes, how

individuals balance information they gather directly from the

environment with information gleaned by watching neigh-

bours, and how the demography and persistence of species

might depend on social interactions have long fascinated
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biologists. The technological revolution that is currently taking

place in the study of collective behaviour is bringing answers to

these questions more rapidly than ever before, and should con-

tinue to strengthen the relationship between theoretical

models, empirical observations and manipulative experiments

in the years to come.
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Imagery. The very-high resolution constellation.
http://www.intelligence-airbusds.com/pleiades/
(accessed 1 July, 2017).

52. Urthecast. The UrtheDailyTM Constellation. https://
www.urthecast.com/urthedaily/ (accessed 1 June
2017).

53. earth-i. The DMC3 Constellation. http://earthi.space/
dmc3/ (accessed 1 June 2017).

54. Planet. Planet application program interface: in space
for life on Earth. https://api.planet.com (accessed 1
June 2017).

55. Kays R, Crofoot MC, Jetz W, Wikelski M. 2015
Ecology. Terrestrial animal tracking as an eye on life
and planet. Science 348, aaa2478. (doi:10.1126/
science.aaa2478)

56. Fehlmann G, King AJ. 2016 Bio-logging.
Curr. Biol. 26, R830 – R831. (doi:10.1016/j.cub.2016.
05.033)

57. Cvikel N, Berg KE, Levin E, Hurme E, Borissov I,
Boonman A, Amichai E, Yovel Y. 2015 Bats aggregate
to improve prey search but might be impaired when
their density becomes too high. Curr. Biol. 25,
206 – 211. (doi:10.1016/j.cub.2014.11.010)

58. Nagy M, Akos Z, Biro D, Vicsek T. 2010 Hierarchical
group dynamics in pigeon flocks. Nature 464,
890 – 893. (doi:10.1038/nature08891)

59. Strandburg-Peshkin A, Farine DR, Couzin ID, Crofoot
MC. 2015 Shared decision-making drives collective
movement in wild baboons. Science 348, 1358 –
1361. (doi:10.1126/science.aaa5099)

60. King AJ, Wilson AM, Wilshin SD, Lowe J, Haddadi H,
Hailes S, Morton AJ. 2012 Selfish-herd behaviour of
sheep under threat. Curr. Biol. 22, R561 – R562.
(doi:10.1016/j.cub.2012.05.008)

61. Hubel TY, Myatt JP, Jordan NR, Dewhirst OP, McNutt
JW, Wilson AM. 2016 Additive opportunistic capture
explains group hunting benefits in African wild
dogs. Nat. Commun. 7, 11033. (doi:10.1038/
ncomms11033)
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