BE/APh161: Physical Biology of the Cell

Homework 3
Due Date: Wednesday, January 28, 2026

“Champions aren’t made in gyms. Champions are made from something
they have deep inside them - a desire, a dream, a vision. They have to have
the skill, and the will. But the will must be stronger than the skill.”
Muhammad Ali

1’. Stuff(t) and the Science and Mathematics of Change

Obviously, I am intensely dedicated to this idea that much of what different
parts of science have focused on is the science of change. In the world of
geology, huge emphasis was placed on the development of our modern notion
of “Deep Time.” In physics, over and over again, we learn about dynamical
laws, whether the original insights of F' = ma or Maxwell’s dynamical theory
of the electromagnetic field, or the heat equation, etc. In chemistry, we have
a beautiful and well-crafted theory of chemical reaction dynamics based upon
the law of mass action.

(a) Give three one sentence examples of some time dependent phenomenon
that you find interesting that qualify as examples of stuf f(t).

(b) Explain in a few sentences what I mean by the update rule paradigm
mathematically. Show how to write an update rule for some dynamical prob-
lem.

1. Post-Translational Modifications and “nature’s escape from ge-
netic imprisonment”

In a very interesting article (“Post-translational modification: nature’s es-
cape from genetic imprisonment and the basis for dynamic information en-
coding”), Prof. Jeremy Gunawardena discusses how we should think about
post-translational modifications as a way of expanding the natural reper-
toire of the 20-letter amino acid alphabet. Similarly, Prof. Christopher
Walsh wrote a whole book entitled “Posttranslational Modifications of Pro-
teins: Expanding Nature’s Inventory,” again making the point that by adding



chemical groups to proteins we can significantly change their properties.

(a) Provide at least one mechanistic idea about how adding a chemical group
to a protein can alter its structure or function. Your answer should be offered
in less than a paragraph, but should be concrete in its assertions about how
these modifications change the protein. Why does Gunawardena refer to this
process of post-translational modification as “escape from genetic imprison-
ment”?

(b) As a toy model of the combinatorial complexity offered by post-translational
modifications, imagine that a protein has N residues that are able to be
phosphorylated. NOTE: comment on which residues these are and how the
dominant phosphorylation chemistry differs between bacteria and eukaryotes.
How many distinct proteins can be generated as a result of the N residues
that can be phosphorylated? Make an approximate estimate of the mass
associated with a phosphate group and what fraction of the total mass this
group represents for a typical protein. Similarly, give some indication of the
net charge introduced by a phosphate group at physiological pH. What ideas
do you have about how we can go about measuring these different states of
phosphorylation?

(c) In this part of the problem, make a crude estimate of the number of sites
on a protein that are subject to phosphorylation. To do so, imagine that
the protein is a sphere with N residues packed at roughly constant density
as shown in Figure 1. How does the radius of that sphere depend upon the
number of residues in the protein? Given that estimate, what is the scaling of
the number of residues that are on the surface with N7 Given that number,
what fraction of those are phosphorylatable? Remember, these are crude
estimates. Work out these results for a concrete case of a typical protein
with roughly 400 amino acids.

(d) Let’s close out these estimates by thinking about a bacterial cell. If all
3 x 108 proteins in such a cell can be phosphorylated with the number of dif-
ferent phosphorylation states that you estimated above, how many distinct
cells could we make with all of these different states of phosphorylation?
State clearly any independence assumptions you are making when you com-
bine phosphorylation states across proteins.
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Figure 1: Schematic of a protein showing the surface residues that are avail-
able for phosphorylation.

2. Energy and Life

One of the strongest things we can say about the properties of living organ-
isms that distinguish them from inorganic materials such as the rocks that
make up the face of Half Dome is that they are always ocnsuming energy.
Figure 2 shows a number of biological processes as viewed through the prism
of energy consumption.

(A) Write a brief, thoughtful paragraph about the meaning of the energy
scale kgT'. This is one of those problems for which no Al is permitted.

(B) In this problem, choose three of the entries in the figure and make your
own calculation of the relevant energy scale and see to what extent you agree
with the reported numbers. Don’t find a way to get the same numbers as
are in the figure. Rather, do this yourself and get your own number. Make
sure you carefully report your thought process and assumptions.

3. Computing With the Update Rule
In class, we discussed the rate equation protocol shown in Figure 3. We

used that protocol to work out the temporal dynamics of the average number
of mRNAs in a population of cells assuming that the promoter of interest
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Figure 2: Energy scales of biology. From top to bottom, the energetic cost of
the process of interest increases. All energies are measured in units of kgT.



RATE EQUATION PROTOCOL
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Figure 3: The rate equation protocol. To write dynamical equations for the
time evolution of quantities of biological interest, there is a progression of
steps.

was constitutively expressed. In this problem, we are going to take an oppor-
tunity to compare analytic and numerical calculations of the behavior not
only of the constitutive promoter, but also, of the simplest genetic switch.

(a) Go through all of the steps of the rate equation protocol shown in Fig-
ure 3(A) by explaining what the dynamical variables are, showing how to
write down the update rule, reinterpreting that update rule as a differen-
tial equation and then demonstrating that the solution to that differential
equation is
mt) =~ — [~ —my)e ™ (1)
Y Y

as shown in the figure. Make sure you explain the t — 0 and ¢ — oo limits.

(b) Write a code in Python that uses the update rule in its simplest form



shown in Figure 3 to find the number of mRNA as a function of time. For
concreteness, let’s take typical numbers such as that the degradation rate is
v=1/3 min" and r = 1/3 min~'. Feel free to use your chatbot of choice
to help you with the coding, but make sure you use Rob’s rules for code
produced in this context. We are NOT going for efficiency. I don’t want you
using a differential equation integrator, I want to do the truly naive Euler
forward integration shown in the rate equation protocol. The goal is to make
a plot of m(t). Make sure you submit your code with your homework. The
code must be commented to demonstrate that you know precisely what is
going on. This should be a very simple code. Comment on how long you
had to run your numerical integration to reach saturation in terms of the
parameters r and 7.

(c) As we have already discussed in class a number of times, most genes are
regulated. This means that unlike the constitutive promoter, there is feed-
back. The simplest example of that behavior is perhaps the auto-activation
switch shown in Figure 4. The simplest model we can write of this equation
is to imagine that the promoter produces mRNA with a higher rate r,, when
it is self-activated. We write an equation of this form as

dA 1 (2)°
e A L
RO

Sketch a diagram of the rates vs A as I have done in class. In particular,
your graph should show the degradation term and then the production term
and beneath it put a phase portrait that shows which direction the vectors
are pointing. Using your diagram, make statements about the fixed point
solutions of this equation and comment on their stability. Does this make
sense?

(2)

(d) Use your code from part (b) but now modified to account for the more
complex right hand side to integrate the equations of motion for the auto-
activation switch. Let’s keep the same value of 7y, and consider o = 1/10 min—
and 7, = 5 min~!. We also need an equilibrium constant and in my dimen-
sionless units, consider K = 5. Solve for A(t) for several different initial
conditions to show that for low initial A, the solution converges to the small
A fixed point and for large initial A, the solution converges to the high A

1
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Figure 4: Architecture of the auto-activation gene circuit. The activator has
a binding site (labeled in green) on its own promoter such that when there is
sufficient level of activator present, the level of transcription will be enhanced
relative to its basal value.

fixed point.
4. Equation of Motion for Mean Cytoskeletal Filament Length

In class we discussed the rate equation protocol shown in Figure 3. Our
application of the protocol in class was to the problem of a constitutive pro-
moter and provided a dynamical equation for the average number of mRNAs
per cell as a function of time. In this problem, you are going to imitate that
analysis, but this time thinking about the average length of a cytoskeletal
filament as a function of time. Imagine a situation in which we have a closed
box in which a single cytoskeletal filament has been nucleated (using a nu-
cleating factor, for example) and which is bathed in a reservoir of monomers,
with the initial number of monomers being given by Ny,;. Our goal is to com-
pute L(t), where L is the length of the filament as a function of time. The
rate at which monomers attach is ko,7 free, Where n g, is the number of free
monomers and the rate at which monomers detach from the tip of the grow-
ing filament is k,7r. Write a dynamical growth equation for the dynamics of
L(t) and find the solution. What is the steady-state length of the filament?
Make a plot of the length as a function of time - you can attempt to figure out
reasonable choices of the parameters by looking at book.bionumbers.org or
by looking at PBoC, but give an explanation of your choices. Also, compare
and contrast the analysis here with that done in class for the constitutive
promoter.



