
BE/APh161: Physical Biology of the Cell
Homework 2

Due Date: Wednesday, January 21, 2026

“Whatever you can do or dream you do, begin it. Boldness has genius, power
and magic in it.” - William Hutchison Murray in his 1951 book The Scottish
Himalayan Expedition

This second problem set follows the same spirit of the first problem set by ask-
ing you to continue your skills as an order-of-magnitude thinker. As before,
when doing street fighting estimates, the goal is to do simple arithmetic of the
kind that all numbers take the values 1, few (f) or 10. few × few = 10, etc.
Please do not provide estimates with multiple “significant” digits that are
meaningless. Be thoughtful about what you know and what you don’t know.
You may use the Bionumbers website (http://bionumbers.hms.harvard.edu/)
to find key numbers (examples are masses of amino acids (BNID 104877) and
nucleotides (BNID 103828), the speed of the ribosome (BNID 100059), etc.),
but please provide a citation to the Bionumber of interest as shown above.
However, for many of these problems the essence of things is to do simple
estimates, not to look quantities up. In particular, if in doubt, use the square
root rule

xguess =
√
xlowxhigh, (1)

which instructs us to take a lower and upper bound guess and then to take
their geometric mean (which is the same as averaging their exponents). Also,
as last time, though we are going to lean into AI in imaginative ways, this is
another assignment where I want you to do the opposite of use the devices
of the modern world - just use your brain and your own sense of things, no AI.

1. Photons and your eyes: Seeing the North Star.

Polaris has been known to generations of northern hemisphere navigators as a
tool for finding latitude by simple geometrical measurements with a sextant.
In this problem you are asked to estimate the amount of light reaching our
eyes from that famed star. The luminosity of Polaris is roughly 2000 times
that of the Sun. Use that the solar irradiance at Earth is about 1000 W/m2

and that Polaris is at a distance of 430 light years from Earth. For photon-
counting estimates, you will need to adopt a typical visible photon energy
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(for example, corresponding to a wavelength of order 500–600 nm) and state
what you chose.

(a) What is the power output of Polaris?

(b) How many photons cross the pupil of your eye each second coming from
this famous star and what is the corresponding mean spacing between pho-
tons along the line of propagation (that is, use the mean inter-arrival time
and multiply by the speed of light)? For the pupil size, adopt and justify a
diameter.

(c) What is the mean rate of arrival of photons to a single cone cell in the
eye? State and justify the assumptions you need about how the star’s image
is distributed on the retina and the effective collecting area associated with a
cone. Comment on what your answer implies about how vision works when
photon arrivals are sparse. Your eye is not measuring a continuous intensity,
it is counting rare events against noise and integrating over time.

(Problem adapted from R. W. Rodieck’s 1998 book The First Steps in Seeing)

2. Kelvin, Darwin and the Age of the Earth.

One of the great scientific debates of the 19th century was the age of the
Earth and the Sun. In that time there was no knowledge of nuclear re-
actions, and the estimates based on known physics were very troubling for
people like Darwin who assumed that life had existed on Earth for times
much longer than these estimates would suggest. These estimates, most fa-
mously done by Lord Kelvin, also seemed to contradict estimates based on
geological evidence, which suggested that the age of the Earth was more than
a few hundred million years. This debate with Lord Kelvin really perturbed
Darwin as shown in Figure 1.

(a) Assume that the Sun gets its power from burning something like coal.
How long until the Sun burns out? Burning any ordinary chemical fuel will
give the same order-of-magnitude estimate because chemical energies per unit
mass are all of the same rough scale. Use your understanding of food to come
up with your estimate of the energy density of fuel in units of J/kg. You will
need the Sun’s mass M� ≈ 2× 1030 kg and its luminosity L� ≈ 4× 1026 W.
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“ “Thomson's views of the 
recent age of the world have 
been for some time one of 
my sorest troubles...

Figure 1: Letter from Charles Darwin to Alfred Russel Wallace in which he
acknowledges the troubling implications of Lord Kelvin’s estimates on the
age of the Earth. Though the handwriting is nearly illegible to my eyes, the
phrase “Thomson’s views of...” can be found clearly about two-thirds of the
way down. The transcription of the letter is given in the main text of this
vignette. This letter, numbered DCP-LETT-6706, is housed in the Darwin
Correspondence Project and dated 14 April 1869.
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(b) Assume that the Sun gets its energy from gravity, the release of gravi-
tational potential energy as it contracts or assembles into a star. The key
insight is that this energy can be written simply as

Egrav = −3

5

GM2
star

Rstar

. (2)

I love this calculation and if you want extra credit, you can derive it. Other-
wise, feel free to use it as an off-the-shelf result. In light of this total energy,
how long until the Sun burns out? (This is the Kelvin estimate.) State
clearly what you assume for the Sun’s radius R� and whether you take the
available radiated energy to be |Egrav| or some fraction of it.

(c) Provide intuition in a paragraph or less as to why either Darwin or Kelvin
could have an opinion about what constitutes a long time or short time. What
kinds of evidence, timescales, or physical processes were most salient to each
of them?

3. RNA Polymerase and Rate of Transcription.

One of the ways in which we are trying to cultivate a “feeling for the organ-
ism” is by exploring the processes of the central dogma. Specifically, I want
you to have a sense of the number of copies of the key molecular players
in the central dogma as well as the rates at which they operate. Further, I
argue that it is critical you have a sense of how we know these numbers.

(a) If RNA polymerase subunits β and β′ together constitute approximately
0.5% of the total mass of protein in an E. coli cell, how many RNA poly-
merase molecules are there per cell, assuming each β and β′ subunit within
the cell is found in a complete RNA polymerase molecule? The subunits have
a mass of 150 kDa each. State clearly what you use for the total protein mass
per cell, for example, based on your estimate from Homework 1. (Adapted
from problem 4.1 of Schleif, 1993.)

(b) Rifampin is an antibiotic used to treat Mycobacterium infections such as
tuberculosis. It inhibits the initiation of transcription, but not the elongation
of RNA transcripts. The time evolution of an E. coli ribosomal RNA (rRNA)
operon after addition of rifampin is shown in Figures 2(A)–(C). An operon is
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a collection of genes transcribed as a single unit. Use the figure to estimate
the rate of transcript elongation and report your answer in nucleotides per
second. Use the beginning of the “Christmas-tree” morphology on the left
of Figure 2(A) as the starting point for transcription.

(c) Using the calculated elongation rate estimate the frequency of initiation
off of the rRNA operon. Make clear how you estimated the typical spacing
between adjacent RNA polymerases along the operon and report your answer
in initiations per second. These genes are amongst the most transcribed in
E. coli.

4. Composition of a cell.

Here we are going to do a rough atomic census of living material by think-
ing about the principal ingredients of a cell. To get a sense of the chemical
makeup of the dry mass of a cell, we are going to focus only on proteins and
nucleic acids. Each subpart requires assumptions on your part about cells
and their molecular contents. State your assumptions explicitly (with units),
give a one-sentence justification (either from memory, intuition, or a cited
source such as Bionumbers / Cell Biology by the Numbers), and then carry
them through consistently.

(a) Provide a simple and clean estimate for the volume and mass of a typical
bacterium such as E. coli.

(b) Assume that 1/3 of the mass of a bacterium is dry mass and for simplic-
ity, we ascribe all of that dry mass either to proteins or nucleic acids. We will
take our elemental composition of a “typical” amino acid to be N1C5O2H8

and a “typical” nucleotide to be P1N5O7C10H14. Given that roughly half the
dry mass of the cell is protein, work out the total protein mass in the cell,
then estimate the number of protein molecules by adopting and defending a
typical protein size (mass or length). From that, infer the number of amino
acids per cell.

(c) As an alternative approach to estimating the total number of proteins in
E. coli, assume that the bacterium is tightly packed with proteins (think of
golf balls in a bathtub). How does this compare to the estimate from part
(b)? If your two answers differ by more than an order of magnitude, identify
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Figure 2: Effect of rifampin on transcription initiation. Electron micrographs
of E. coli rRNA operons: (A) before adding rifampin, (B) 40 s after addition
of rifampin, and (C) 70 s after exposure. No new transcripts have been
initiated, but those already initiated are carrying on elongation. In parts
(A) and (B) the arrow signifies the site where RNaseIII cleaves the nascent
RNA molecule producing 16S and 23S ribosomal subunits. RNA polymerase
molecules that have not been affected by the antibiotic are marked by the
arrows in part (C). (Adapted from L. S. Gotta et al., J. Bacteriol. 173(20),
6647–6649 (1991).)
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which assumption is responsible.

(d) Work out the number of nucleotides in the genome of our bacterium of
interest. State clearly whether you estimated this from assumptions about
genes or whether you looked up a genome size (and cite your source if you
did).

(e) Finally, figure out how many ribosomes are needed, translating at roughly
15 aa per second, to translate all of those proteins required to make a new
cell within one division time. State and justify the division time you use.
How many nucleotides are present in the ribosomal RNA making up all of
these ribosomes?

(f) Given all of these numbers from the rest of this problem, you are now
able to work out the overall composition of a cell. Provide an approximate
formula for the stoichiometry of a bacterium.

5. A feeling for the complete blood count (CBC) test.

Typical results for a complete blood count (CBC) are shown in Table 1.
Assume that an adult has roughly 5 L of blood in his or her body. Choose ei-
ther the male or female reference values (state which) and use street-fighting
arithmetic. Based on these values estimate:

(a) The number of red blood cells. How does this compare to your estimate
for the total number of cells in a human body and what does it tell you about
how abundant red blood cells are?

(b) The percentage in volume they represent in blood. Do this in two ways:
first using the hematocrit value, and second by combining the RBC count
with the mean corpuscular volume (MCV). Comment on whether the two
agree at the order-of-magnitude level.

(c) Their mean spacing. State the simple geometric model you are using to
convert number density into a spacing.

(d) The total amount of hemoglobin in the blood.
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Test Value

Red blood cell count (RBC) Men: ≈(4.3–5.7) × 106 cells/µL

Women: ≈(3.8–5.1) × 106 cells/µL
Hematocrit (HCT) Men: ≈(39–49)%

Women: ≈(35–45)%
Hemoglobin (HGB) Men: ≈(13.5–17.5) g/dL

Women: ≈(12.0–16.0) g/dL
Mean corpuscular hemoglobin (MCH) ≈(26–34) pg/cell
MCH concentration (MCHC) ≈(31–37)%
Mean corpuscular volume (MCV) ≈(80–100) fL

White blood cell count (WBC) ≈(4.5–11) × 103 cells/µL
Differential (% of WBC):

Neutrophils ≈(57–67)
Lymphocytes ≈(23–33)
Monocytes ≈(3–7)
Eosinophils ≈(1–3)
Basophils ≈(0–1)

Platelets ≈(150–450) × 103 cell/µL

Table 1: Typical values from a CBC. (Adapted from R. W. Maxwell, Maxwell
Quick Medical Reference, Tulsa, Maxwell Publishing Company, 2002.)

(e) The number of hemoglobin molecules per red blood cell. State clearly
how you convert from grams of hemoglobin to molecules.

(f) The number of white blood cells in the blood. As an optional extension,
use the differential to estimate the counts of neutrophils and lymphocytes.

(g) The number of platelets in the blood. Then, based on your answers, rank
RBC, WBC, and platelets by abundance in blood and comment briefly on
whether the most abundant “cell” in blood is also the most abundant cell
type in the human body.

6. Migration of the bar-tailed godwit

Animal migrations are one of the greatest of interdisciplinary subjects, bring-
ing together diverse topics ranging from animal behavior to the physics of
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navigation to the metabolism required for sustained long-distance travel. The
bar-tailed godwit is a small bird that each year travels between Alaska and
New Zealand on the same kind of incredible nonstop voyage taken by happy
tourists in modern long-distance jetliners as shown in Figure 3. During a
visit to New Zealand’s South Island, one of us had the chance to see these
amazing birds in Okarito Lagoon with a naturalist guide who claimed that
over the course of their ten-day, ten-thousand kilometer trip, these migratory
birds lose 1/3 of their body mass. In this problem, we make a series of simple
divide-and-conquer estimates to see whether this claim might be true. State
and justify the numerical values you adopt for ρ, v, and L.

(a) Using dimensional-analysis arguments, work out how the drag force ex-
perienced by flying godwits depends upon the density of air (ρ), the speed
of the birds (v) and the size of the birds (L). Specifically, work out the
coefficients α, β and γ in the expression

Fdrag = CραvβLγ, (3)

where C is a dimensionless constant that we will not consider further.

(b) Work out the power expended by the bar-tailed godwit to overcome the
drag force. Then, work out the total energy expended during the ten-day
migration in overcoming this drag force. State and justify how you convert
from the 10,000 km and 10 day information to an estimate of the flight speed.

(c) Given that burning fat yields 9 kcal/g, work out the number of grams
of fat that would need to be burned to sustain the ten day flight of the
bar-tailed godwit. Make clear what you assume about conversion efficiency
between metabolic energy and mechanical work (for example, treat it as
100% for a lower bound, or adopt a plausible efficiency and state it). What
fraction of the bird’s body mass would be lost during such a migration based
on these estimates, and how does it compare to the claimed 1/3 loss?

7. Real Estate for the Factories of ATP Synthesis

We are captivated by the tension between those things about living organ-
isms that are universal and those things that are baroque and specific to
a given organism. One of the nearly universal features of living organisms
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Figure 3: Map showing the migration pattern of the bar-tailed godwit.
Adapted from Gill et al., “Extreme endurance flights by landbirds cross-
ing the Pacific Ocean: ecological corridor rather than barrier?”, Proc. Biol.
Sci. 276(1656), 447–457 (2009).
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on our planet is their use of ATP hydrolysis as an energy source for a huge
variety of processes. A key empirical observation is that many cells operate
with a roughly constant ATP demand per unit volume. Where does all of
this ATP come from? Cells have tiny molecular machines known as ATP
synthase in the membrane which use an ion gradient to drive the rotation of
these machines to produce ATP. However, ATP is consumed throughout the
volume of cells, but is produced on membranes. This leads to the possibility
that as cells get bigger, there may be a point at which the surface area is
insufficient to keep up with the demands of the cytoplasmic volume. Indeed,
this problem explores the hypothesis that for cells above a certain size, ATP
synthesis at the plasma membrane (such as in bacteria) no longer suffices
and that a new specialized energy factory (i.e. the mitochondria) is required.

In what follows, keep careful track of two different quantities: a volumetric
ATP demand density q with units of ATP/(µm3 s) and a surface ATP pro-
duction flux j with units of ATP/(µm2 s).

(a) By considering the cost of protein synthesis for a dividing bacterium with
a fast division time of 1000 s, justify the assertion that the volumetric ATP
demand density is of order

q ≈ 106 ATP

µm3 s
. (4)

State and justify the numerical values you adopt and comment briefly on
whether protein synthesis is plausibly a dominant contribution to the ATP
budget at the level of order-of-magnitude accuracy.

(b) As shown in Figure 4, estimate the surface ATP production flux j sup-
plied by ATP synthase on a membrane, in units of ATP/(µm2 s). Your
result will depend upon an areal density of ATP synthase (number per µm2)
multiplied by an ATP production rate per synthase (ATP/s). State your
assumptions explicitly.

(c) Now consider a spherical cell of radius R whose cytoplasm demands ATP
at volumetric rate density q and whose surface can supply ATP at flux j.
The total ATP demand is q(4πR3/3) and the total ATP supply is j(4πR2).
Use these to compute the maximum radius Rmax such that surface ATP pro-
duction can keep up with volume demand. Express your final result both as
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a formula in terms of j and q and as a numerical estimate using your values
from parts (a) and (b). Comment on how eukaryotes evade this surface-area
limitation.
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Figure 4: Surface coverage of bacterial cells with ATP synthase. For small
cells, the demands of the cytoplasmic power consumption can be met by ATP
synthases on the plasma membrane. However, for larger cells, there is not
enough surface area to keep up with the demands of the power needs of the
cellular interior.
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