BE/APh161: Physical Biology of the Cell

Homework 1
Due Date: Wednesday, January 14, 2026

Solutions by: Nicholas Gravina, Tom Rdéschinger, Jordan Santana, Sara Mahdavi

“The main obstacle to progress is not ignorance, but the illusion of knowledge.” Ronald
Graham in the Science Lives series of interviews by the Simons Foundation

This first problem set involves a number of challenges in order-of-magnitude thinking. When
doing street fighting estimates, the goal is to do simple arithmetic of the kind that all num-
bers take the values 1, few (f) or 10. few x few = 10, etc. Please do not provide estimates
with multiple “significant” digits that are meaningless. Be thoughtful about what you know
and what you don’t know. You may use the Bionumbers website:

http://bionumbers.hms.harvard.edu/

to find key numbers (examples are masses of amino acids (BNID 104877) and nucleotides
(BNID 103828), the speed of the ribosome (BNID 100059), etc.), but please provide a citation
to the Bionumber of interest as shown above. However, for many of these problems the
essence of things is to do simple estimates, not to look quantities up. In particular, if in
doubt, use the square root rule

Tguess = v/ LlowLhigh, (1)

which instructs us to take a lower and upper bound guess and then to take their geometric
mean (which is the same as averaging their exponents). On the subject of A, I use chatbots
every single day and to great effect. That said, I would truly prefer that you do not use
chatbots on this homework because these exercises are very helpful for the development of
your own intuition.

1. I wonder.

Give three thoughtful sentences that start with the two words “I wonder.” Make sure that
these “I wonder” sentences concern the nature of the living world writ large. Though we will
routinely use Al in this course, this is NOT one of those moments. Here we are interested
in you developing your most truly original and authentic thoughts.

2. William Harvey and the circulation of the blood

In 1628, William Harvey published one of the most profound scientific works of all time:
Ezercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus (An Anatomical Disqui-
sition on the Motion of the Heart and Blood in Animals). In this short treatise, Harvey
shattered centuries of Galenic medical orthodoxy and demonstrated that blood does not ebb
and flow in the body like tides, but circulates in a closed loop, pumped by the heart. His
argument was not built on microscopes or chemical analysis. It was based on estimation.
Galen, the great physician of antiquity, had taught that blood was continuously created
in the liver and consumed by the body. Harvey, after anatomical dissections and careful
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observations of living animals, doubted this. But doubt alone was not proof. According
to Galen’s model, the liver manufactured new blood from digested food as needed, while
the tissues ‘burned up’ or consumed this blood, with no concept of recirculation. Galen
also believed that blood seeped from the right side of the heart to the left through invisible
pores in the septum, not that the heart actively pumped it. Blood movement to and from
the heart was not seen as a continuous closed loop, but more as one-way movement and
consumption. This view was deeply entrenched in both medical teaching and practice for
centuries. Harvey turned to numbers. He asked: if blood is continually created anew, how
much would need to be made every hour to supply the heart’s pumping? And if so much
blood is truly consumed, where does it all go?

Harvey’s revolutionary insight emerged from a series of elegant measurements and order-
of-magnitude calculations that revealed the impossibility of the prevailing Galenic model.
Working with sheep, pigs, and other mammals, Harvey first measured the total volume of
blood that could be drained from these animals after death. He found that a typical sheep
contained roughly a few liters of blood, just shy of the 5-6 liters of blood in the typical adult
human body.

In his treatise, Harvey offered a radically simple argument. He proposed that the blood
could not possibly be produced fast enough to account for how much the heart ejects. The
only possibility was that it recirculated. He never presented a formal equation, but he
offered an invitation for the reader to do the estimate for themselves, an invitation we accept
below. Here is the key passage from FExercitatio Anatomica de Motu Cordis et Sanguinis in
Animalibus (also shown in Figure[l) that invites us to take up pencil and paper in hand and
to calculate:

But if all things be as they are now represented, we shall feel ourselves at liberty
to calculate the quantity of the blood, and to reason on its circular motion.
Should any one, for instance, in performing phlebotomy, suffer the blood to flow
in the manner it usually does, with force and freely, for some half hour or so,
no question but that the greatest part of the blood being abstracted, faintings
and syncopes would ensue, and that not only would the arteries but the great
veins also be nearly emptied of their contents. It is only consonant with reason to
conclude that in the course of the half hour hinted at, so much as has escaped has
also passed from the great veins through the heart into the aorta. And further, if
we calculate how many ounces flow through one arm, or how many pass in twenty
or thirty pulsations under the medium ligature, we shall have some grounds for
estimating how much passes through the other arm in the same space of time ;
how much through both lower extremities, how much through the neck on either
side, and through all the other arteries and veins of the body, all of which have
been supplied with fresh blood, and as this blood must have passed through the
lungs and ventricles of the heart, and must have come from the great veins, — we
shall perceive that a circulation is absolutely necessary, seeing that the quantities
hinted at cannot be supplied immediately from the ingesta, and are vastly more
than can be requisite for the mere nutrition of the parts.
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ture through the arteries, not through the veins; and the ar- .
teries nowhere receive bl’ood from the veins, nowhere receive But that this truth may be made the more apparent, let an

blood save and except from the left ventricle of the heart. arm be tied up above the elbow as if for phlebotomy (s, 4, fig. 1).
Nor could so large a quantity of blood be drawn from one vein
(a ligature having been duly applied), nor with such impetuosity,
such readiness, such celerity, unless through the medium of the
impelling power of the heart.

But if all things be as they are now represented, we shall
feel ourselves at liberty to calculate the quantity of the blood,
and to on its circul ti Should any one, for in-
stance, in performing phlebotomy, suffer the blood to flow in
the manner it usually does, with force and freely, for some half
hour or so, no question but that the greatest part of the blood
being abstracted, faintings and syncopes would ensue, and that
not only would the arteries but the great veins also be nearly

tied of their contents. It is only consonant with reason
to conclude that in the course of the half hour hinted at, so
much as has escaped has also passed from the great veins
through the heart into the aorta. And further, if we calculate
how many ounces flow through one arm, or how many pass in
twenty or thirty pulsations under the medium ligature, we shall
have some grounds for estimating how much passes through the
other arm in the same space of time ; how much through both
lower extremities, how much through the neck on either side,
and through all the other arteries and veins of the body, all of
which have been supplied with fresh blood, and as this blood
must have passed through the lungs and ventricles of the heart,
and must have come from the great veins,—we shall perceive
that a circulation is absolutely necessary, seeing that the quan-

tities hinted at t be supplied i diately from the ingesta,
and are vastly more than can be requisite for the mere nutrition
of the parts.

It is still further to be observed, that the truths contended
for are sometimes confirmed in another way; for having tied
up the arm properly, and made the puncture duly, still, if from |
alarm or any other causes, a state of faintness supervenes, in
which the heart always pulsates more languidly, the blood does
not flow freely, but distils by drops only. The reason is, that
with the somewhat greater than usual resistance offered to the

transit of the blood by the bandage, coupled with the weaker in the course of the veins, especially in labouring

and those whose veins are large, certain knots or ele-
5

Figure 1: William Harvey and the circulation of blood. Left: A page from William Harvey’s
“An Anatomical Disquisition on the Motion of the Heart and Blood in Animals.” Harvey
provides the factual backdrop and the concept of an estimate for quantifying the blood
traveling throughout a human body. Right: Drawing illustrating how Harvey estimated the
blood flow in an arm.



Your job in this problem is to use what you know about how much blood they take from
you in a typical blood test and how long it takes them to do it to make a very naive
estimate for the volume of blood that must pass from the great veins through the heart into
the aorta each day. Compare that number to the total blood volume in the body and to
any plausible production rate from food. Follow Harvey by starting from a single arm and
scaling up to the whole body by a factor you defend at the order-of-magnitude level. Treat
your blood-draw-based estimate as a strict lower bound because the measurement setup
throttles the flow, and note explicitly that even this lower bound is enough for Harvey’s
contradiction. As a modern extension, give a second, independent estimate of cardiac
output using heart rate and stroke volume (or blood pressure arguments) and reconcile the
two. Comment on the Galenesque and Harveyesque pictures. The main point here is not
to nail the pumped volume precisely, but to see that even a naive lower bound already far
exceeds what could be supplied from the ingesta if there were no circulation.

Solution: A typical blood test takes around the following amount of blood,
V;iraw ~ f x 10 mL

and takes about
taraw ~ f min.
This corresponds to a lower bound for the blood flow rate in the vein of

Vdraw

tdraw

Qvein =

We scale from one arm to the whole body. In my arm, I count at least around ten veins.
Then the heart is also supplying the trunk, the other arm, the legs... I can assume that as
my legs are wider I might have more veins in them. Therefore, we take for the flow rate in
the whole body,

Qbody ~ 100 x Qvein-
The volume of blood pumped per day is then

vraw
Viaay & Quoay X (1 day) = 100 x —2 5 (1 day),

draw

which gives
f x 10 mL

Viay = 100 x
day f X min

x (24 x 60min) ~ 10°mL ~ 10° L.
We compare this daily pumped volume to the total blood volume in the body,
‘/blood ~ 5 L.

We have that Vg, > Viiood, the same blood must we be passing through the heart many
times per day. Especially since we took a lower bound of the blood flow rate. Continuous
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production and consumption of blood from food, would necessitate a few hundreds liters of
blood to be produced every day!

Indeed, say we ingest a kilogram of food a day and a few liters of water then, taking for
blood density, water density, this would give us around a few liters of blood produced a day,
which is far from the 1000 liters of blood circulating through our heart every day!

We now look at cardiac output using heart rate and stroke volume. A typical heart rate
is

r ~ 60 min~!,

and a typical stroke volume is
‘/;troke ~ 100 mL.

The cardiac output is therefore

cardiac out ~_
Qbody T X ‘/stroke;

and the total volume pumped per day is

cardiac out ~_ cardiac out o
Vi ~ Qrady X (1 day) = Vitroke X 7 X (1 day).

Which gives,
ygardiac out — 10 ml, x 60min~" x (24 x 60 min) ~ 107 mL = 10*L,

day

We have an extra factor 10 compared to the approximation with the blood draw. This makes
sense, since the later approximation was a lower bound.

The Galenesque picture is not compatible with any plausible blood rate production from
food. Blood has to be "recycled” and is pumped several times a day through the heart.

3. Benjamin Franklin and Molecular Dimensions.

In his travels between America and Europe, Benjamin Franklin was subjected to the vi-
cissitudes of the sea which led him to reflect on his reading of Pliny the Elder and claims
of how oil was known to smooth the waves. Upon arriving in England, Franklin took the
concept to the test. He tells us of his experience thus: “At length at Clapham where there
is, on the common, a large pond, which I observed to be one day very rough with the wind,
I fetched out a cruet of oil, and dropped a little of it on the water. I saw it spread itself
with surprising swiftness upon the surface... the oil, though not more than a teaspoonful,
produced an instant calm over a space several yards square, which spread amazingly and
extended itself gradually until it reached the leeside, making all that quarter of the pond,
perhaps half an acre, as smooth as a looking glass.”

(a) Though Franklin himself never made the estimate (that was to await Lord Rayleigh in
an experiment like that shown in Figure , use Franklin’s description of the experiment to
work out the thickness of the oil film (the height of a lipid!) that covered the surface of
Clapham common pond. Does your number jibe with what you know about the structure
of lipids?



Solution: We can get to the thickness of the oil layer by simply dividing the volume of oil
by the area it spread across. For the volume, we will take “not more than a teaspoon” to be
a few mL or few cm?® and the “perhaps half an acre” to be a few thousand m?. The rest of
the work involves unit conversions to get our answer into meaningful units:

volume few cm® m? 10" nm
height = = X = 107" cm x
6 area few x 103 m?2 104 cm? m cm

= 1 nm. (2)

(b) Using a typical molecular mass for a lipid (say, 1000 g/mol - give an order of
magnitude justification of this rule of thumb), work out the number of lipid molecules
that covered that surface of the pond and use that number to compute the area per lipid.
How do your results compare to the modern values for the size of lipids as shown in Figure

Solution: Assuming the oil is roughly the density of water, which is not unreasonable
for an order-of-magnitude estimate, our few mL of oil correspond to a few g of oil. Using
the provided molecular mass and Avogadro’s number, we arrive at a total number of lipid

molecules:
mol 6 x 10% lipid molecules

1000g mol

To get the area of the head of lipid, we simply need to divide the area the oil was spread
across by this number of lipids:

few g x ~ 2 x 10! lipids. (3)

few x 103 m? N 10718 m2 108 nm?

~ = 1 nm?/lipid. 4
2% 102 lipids ~_ lipid ~_ m? nm/lipi (4)

area =

Comparing our results to the known values, we find that the lipid bilayer is around 4 nm
thick (BNID:105298), meaning that each lipid is about 2 nm, which is only a factor of two
off from our estimate in part (a). Pretty good considering how crude the experiment was
and how imprecise the descriptions are! For the surface area of a lipid, we see that value is
0.5 nm? (BNID:106993), which is again just a factor of two off from our estimate.

5. The concentration rule of thumb.

(a) One of the key rules of thumb we will invoke over and over again is knowledge of the
concentration corresponding to one molecule per E. coli cell. Using that the volume of
such a cell is approximately 1 um?3, work out a simple estimate for the concentration of
1 molecule per E. coli cell. Remember that we are in street-fighting mode and thus your
answer should be 1, few or 10 in nM, yM, mM or M.
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Figure 2: Putting oil on water to measure molecular dimensions. Here we see that the lipid
molecules form a monolayer.

TaBLE 1.
Preliminary Measurements of Cross-Sections and Lengths of Molecules.
I II. IIX. IV.
Cross-section. \/ Cross. sec. Length, Length per
Substance Formula Sq. cm. Cm. Cm. carbon atom,
Palmitic acid Ci:Hu COOH 21 X107 4.6 X107%24.0X 107815 X 1078
Stearic acid CivH3COOH 22 X 10718 4,7 X10-%250 X 10781.39 X 1078
Cerotic acid CyH:u COOH 25 X 1078 50X 10-%31.0 X10781.20 X 1078
Tristearin (C1sHs502)3CsH; 66 X 107 3.1 X 10-% 25.0 X 10-8 1.32 X 1078
Oleic acid C1yH3;COOH 46 X 1018 6.8 X 10-8 11.2 X 10-% 0.62 X 1078
Triolein (CisH330:2)3CsHs 126 X 1018 11.2 X 10-% 13.0 X 10-% 0.69 X 108
Trielaidin (C1sH330,)3C3H 120 X 10-¢  11.0 X 10-%13.6 X 10-% 0.72 X 1078
Cetyl palmitate C;;H3;COOC;sHs; 23 X 10-18 4.8 X 10~ 41.0 X 10-8 2.56 X 1078
Myricyl aleohol C;oHgs OH 27 X 10-1% 5.2 X 10-f41.0X 10-8 1.37 X 1078

Figure 3: Values for the size of lipids obtained by Irving Langmuir in 1916 using the so-called
Langmuir trough, earlier used to great advantage by Agnes Pockels.



Solution: Given the volume of approximately 1 ym?® = 107 L derived in part (a) of Part
4., it follows that the concentration of 1 molecule per FE. coli cell should be

10'® molecules mol
L 6 x 1023 molecules

[1 molecule/E. coli cell] ~ ~ 1 nM. (5)

(b) As an application of this idea, how many H* ions are there in a bacterial cell if the pH
is 7.07 State any assumptions you make (for example, that the pH is uniform throughout
the cell and that you can ignore buffering for the purpose of this estimate).

Solution: We convert pH to concentration of H* ions from the relationship
[H] =10""" M. (6)

So for a pH of 7.0, [H*] = 107" M, or 102 nM. Thus, since we know that 1 molecule per
bacterium is equivalent to a concentration of ~ 1 nM, a pH of 7.0 corresponds with 100 H*
ions in the cell.

(c) It is very useful to have a sense of how far molecules are apart at a given concentration.
Work out a formula that relates the typical spacing between molecules d to the concentration
¢ by assuming the molecules are uniformly distributed in 3D. Then, make a plot that shows
d as a function of ¢ for concentrations ranging from nM to M. Make sure your axes are
labeled with units.

Solution: Our goal is to determine the average spacing between molecules given a specified
concentration. From the molar concentration, we can express the molecular density as
cmol 6 x 10% molecules L

L mol 10%am? € 0.6 molecules/nm”. (7)

Inverting this result, we generate the volume of solution occupied by each molecule at molar
concentration C' M,

V = 1.66 nm*/molecule 1/c. (8)

The cubed root of this volume thus indicates the average separation between molecules, such

that we may conclude
1.18

cl/3

doc VY3 = nm. (9)

(d) As an application of your thinking from part (c), explain what the concept of the
“critical concentration” is for the polymerization of actin filaments. Then, provide a rough
estimate of the mean spacing between actin monomers in a solution at the critical concentra-
tion. State and justify the critical concentration you use (from memory or by citing a source).
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Figure 4: Plot of average separation d between molecules against concentration ranging from
nM to M.

Solution: Polymerization in solution can be considered under a simple model: after a
nucleation phase where 3-4 monomers randomly interact to form a nucleus which can then
be elongated. This elongation is then governed by monomer capture events (monomers
polymerize onto one end of the polymer) and monomer escape events (a monomer leaves
one end of the polymer). Monomer capture is dependent on the interaction between one
end of the polymer and a monomer in solution, and is therefore likelier the smaller the
mean separation between monomers in solution - we can capture this by setting the rate of
monomer capture to be proportional to the concentration of monomers. Monomer escape,
however, does not require interaction with monomers in solution and is therefore independent
of the monomer concentration. This can be written as

dn
— =k,,C —k, 10
o I (10)

where n is the number of monomers that constitute the polymer we are considering, k,,
(resp. koff) are rate constants for monomer capture (resp. escape), and C' is the monomer
concentration in solution.

We can then see that the system is in steady state when C' = C.;; = ]:’of j . This is referred
to as the critical concentration - below this concentration the filaments depolymerize and
above this concentration the filaments keep polymerizing, pulling monomers out of solution
until the critical concentration is reached.

Actin polymerization, however, is more complicated than this draft model captures. It turns
out that the ends of actin filaments behave asymetrically - i.e. actin filaments have a ‘plus’



end and a ‘minus’ end with the ‘plus’ end having a higher growth (and shrinkage) rate. A
better first-order model is given by

dn

_ Lt - + -
where the ‘+" and ‘-’ superscripts in the rate constants denote the ‘plus’ and ‘minus’ end of
the filament respectively. (Note: There are more subtleties involved in actin polymerization
- e.g. the monomer capture rates also depend on whether the monomer is ADP or ATP

bound - but the above is sufficient as a first-order model.)

. . . k}F . .
This system now has three critical concentrations: C'; = ;ﬁf below which both ends shrink,

_ koyy . — k:ff:go_ff
c_= -k above which both ends grow, and Cry = e

steady—s%nate (referred to as ‘treadmilling’) whereby the ‘plus’ end grows at the same rate
at which the ‘minus’ end shrinks. For concentrations between C'_ and C., the ‘plus’ end
grows and the ‘minus’ end shrinks, with the relative rates of the two processes determining
whether or not the filament elongates.

at which the system reaches

As per BNID 112788, 'y ~ 0.06 uM and C_ ~ 0.6 uM, corresponding to a mean separation
of ~ 300 nm and ~ 100 nm respectively. Crj; lies somewhere between the two, which we
estimate to be ~ 0.2 uM and which corresponds to a mean separation of ~ 200 nm.

6. Street fighting the ribosome.

One of the most important molecular assemblies in the cell is the ribosome. The number of
ribosomes per cell dictates how fast cells can grow. E. coli growing with a division time of 24
minutes have roughly 72,000 ribosomes per cell, and slow growing E. coli with a division time
of 100 minutes have about an order of magnitude fewer ribosomes with a count of ~ 6800
ribosomes.

(a) In this part of the problem, we will use our street fighting skills to explore the ribosomal
density in another organism as shown in Figure b, and then see how well our results from
the electron microscopy study square with the numbers quoted above. By examining the
figure, make an estimate of the number of ribosomes per um3 and compare that result to the
numbers quoted for E. coli above. State clearly what region you counted, what depth (or
slice thickness) you implicitly assumed, and how you handled the green and yellow ribosomes.

Solution: In the close up view of the 3D reconstruction (panel C of the Fig [5) we can
count 25 ribosomes labeled in green (high fidelity) and 17 ribosomes labeled in yellow (in-
termediate fidelity). Including 10 of the intermediate-fidelity ribosomes into our counting,
we can say with high confidence that there are Njose up ~ 35 ribosomes in panel C.
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ribosomes 50 nm

Figure 5: Cryo EM study of a bacterial cell. These images are of the tiny bacterium, Spiro-
plasma melliferum. Using algorithms for pattern recognition and classification, components
of the cell such as ribosomes were localized and counted. (A) Single cryo-electron microscopy
image. (B) 3D reconstruction showing the ribosomes that were identified. Ribosomes labeled
in green were identified with high fidelity while those labeled in yellow were identified with
intermediate fidelity. (C) Close up view that you should use to make your count. Adapted
from JO Ortiz et al., J. Struct. Biol. 156, 334-341 (2006).

Next, to estimate the volume of the cell section in panel C, we approximate it as a cylinder
with a diameter of 100 nm and height of 200 nm, whose volume is given by

X (100 nm)?
‘/CIOSE up = i (—4 nm) x 200 nm

~ 2 x 10°nm?. (12)
The estimated concentration of ribosomes in Spiroplasma melliferum then becomes

o N, close up
P = V—
close up

B 35
2% 105nm3
~2x10°nm™

103 nm)3
1 pm
=2 x 10* ym 2. (13)

=2x10°nm™> x (

Our estimate of 20,000 ribosomes per um? falls nicely within the range observed for E. coli

cells, which have a volume of ~ 1 um? and hence, ribosome density range of ~ 7,000 — 70, 000
3

per pm®.
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(b) Now that you have figured out the number of ribosomes per pum3, use that result to
estimate how long it would take to reproduce the entire proteome of a bacterial cell. To
that end, you will need to supply a typical volume of a bacterial cell, its mass, what fraction
of that mass is protein, and then use the known rate of translation (see Bionumbers) to
estimate how long it takes to double the proteome given the number of ribosomes. State
and justify any assumptions you make about typical protein size (mass or length) and about
whether all ribosomes are actively translating. Make sure you explain your arguments and
the insights they provide.

Solution: From part (a) we have a ribosome density p. For a cell of volume V., the
number of ribosomes is

Nribo ~ P ‘/Cell- (14>
Assume the cell has the same density as water, so its total mass is
Meell & Py Veell: (15)

We take the dry mass to be one third of the total mass, and we assume that the dry mass
is only proteins or nucleic acids. We consider that half of the dry mass is protein, such as

1 1/1 1
Mprotein ~ 5 Mary =~ 5 (gmcell> = Epw‘/;:ell' (16)

We computed before the typical molecular mass of an amino acid M,, ~ 100 Da ~ 100 g/mol.
The number of amino acids in the whole proteome is therefore,

Mprotein pw‘/;:ell
Naa = Ny—2 = Ny———, (17)
w Maa 6 maa
with N4 =~ 6 x 10* mol™', the Avogadro number. To double the proteome, the cell must
synthesize roughly this many amino acids again. If each active ribosome elongates at rate
v (aa/s), and only a fraction ¢ of ribosomes are actively translating, then the amino-acid
production rate is

Taa ~ ¢Nrib0 v = Cbp‘/cell V. (18)
Therefore the time to reproduce the entire proteome is

¢ ~ Naa - PuVeen/ (61,) _ Napw
proteome Tan gbp‘/ceuv 6 Maa gbp"U

We use the following parameter values,

(19)

p~2x 10" pm=3,

v =~ 10 aa/s, Peptite chain elongation in E. coli: 12-21 aa/s (BNID 100059),
» =~ 0.8,

pw~=1lg-cm™? =107 g- pum™3,
M, ~ 10% Da.
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The final result is,

. _ 1072 g - um™3 x 6 x 102 mol~!
proteome ™ 6 5 102 gmol~! x 0.8 x 2 x 10* pm=3 x 105~
~ 6 x 10° s =~ 2 hours. (21)

7. Sizing up the Central Valley.

In this course, we are going to consider biological phenomena across a huge range of scales in
space and time, including examining the ways in which the biology of our planet is altered
by humans. California’s Central Valley is one of the most potent agricultural regions in the
world. In this problem, you are going to evaluate many of the key factors associated with
its enormous productivity without any data aside from a single satellite image of the region
as shown in Figure @ Note that the key point here (and what you will be graded for if you
care about such things) is the logical flow of your estimates, not the particular numerical
values you found.

(a) Water usage. Using what you know about watering and the growth of plants, make an
estimate of the amount of water used to irrigate the agriculture of the Central Valley.

Solution: We will assume that winter is too cold for the crops to grow (December-February).
Due to the weather of California, there is limited rainfall in the area, so we will assume that
all the water crops use to grow come from irrigation. From the satellite image, we know that
the size of Central Valley is around 10'° m?. We will assume that all the regions are used for
agriculture to simplify our calculation. Next, we would like to estimate how many litres of
water are needed everyday to irrigate the crops. We would estimate this number based on
our daily experience taking care of flowers at home. From our experience, a typical size of a
flowerpot is 20 cm x 20 cm and we would need a cup of water (250 mL) everyday to irrigate
the flower. That would give us

water needed to irrigate crops in a unit area per day =
0.25 L/day  0.25 L/day
20 cm-20 em  0.04 m2

~ 5 L/m” - day. (22)
Then, we can estimate the total amount of water needed every year as

10 m?  x5L/m”- day x 30 days/month x 9 months/year ~ 10"°L/year.  (23)
— —_———

Central Valley area crop season

Just to help you get a sense of how much water this is, the average volume of water in Lake
Tahoe is 37 trillion gallons, which is roughly 1.4 x 10" L (https://www.fs.usda.gov/main/
ltbmu/about-forest/about-area). So, the amount of water we estimated above is about
1/10 of the volume of Lake Tahoe.
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CALIFORNIA AGRICULTURE

/
A= 300 km x 100 km
~fx 1019 m?

Figure 6: Satellite image of California’s Central Valley.
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(b) Nitrogen usage. Since the beginning of the twentieth century, synthetic nitrogen
fixation via the Haber—Bosch process has enabled the modern world to feed of order half
of humanity. In this part of the problem, begin by estimating the number of kilograms of
biomass per square meter that is produced per year. From that number, figure out how
many kilograms of nitrogen are contained per square meter of biomass. Then, make an
estimate of how much fertilizer is used for each square meter and hence for the entirety of
the Central Valley. State clearly what you mean by “fertilizer used” (for example, kg of
nitrogen applied per year).

Solution: The biomass produced depends on the type of plant being grown, so we will
only estimate the order of magnitude. We can estimate biomass per square metre based on
everyday experience and specific examples. Take watermelon as an example, we can harvest
a few watermelons per m? and each watermelon weighs about a few kg, so we can use the
trick of few x few ~ 10 to get

Biomass per square metre ~ 10 kg/ m?. (24)

To estimate the amount of nitrogen contained in plants, we need to better understand the
plant composition. Plants are composed of water, carbon-containing organic, and non-
carbon-containing inorganic substances. We know that approximately 95% of plant is made
of water, so less than 5% of biomass is composed of organic and inorganic substances.

Nitrogen is a critical component of amino acids in protein. To estimate amount of nitrogen
contained in the remaining biomass (5%), we will assume that it is composed of amino acids.
Considering the atomic composition of amino acids, we can say that on average they contain
2 oxygen (16 g/mol), 5 carbon (12 g/mol), 1 nitrogen (14 g/mol) and 10 hydrogen (1g/mol)
atoms. Adding the molecular weights of the constituents atoms, we find that on average,
approximately 10% of the protein weight is nitrogen. So, approximately 5% x 10% = 0.5%
of the biomass in a plant is composed of nitrogen. Then, we can estimate that

Nitrogen per biomass per square metre = 0.5% x 10 kg/m* = 0.05 kg/m” (25)

Finally, to calculate fertilizer usage, we will assume that the fertilizer is completely composed
of nitrogen for the simplicity of calculation. Then, for the entirety of the Central Valley, we
need

0.05 kg fertilizer/m? x 10 m? = 5 x 10® kg fertilizer. (26)

(c) Pesticide usage. Undertake an estimate similar to that in the first two parts of the
problem to figure out how much pesticide is used on the Central Valley every year. State
clearly what you are counting (for example, total mass of active ingredient applied per year).
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Solution: To estimate the pesticide used every year, we will start from an easier estima-
tion by thinking of how pesticide is sprayed using crop dusters. A crop duster is a small
agricultural aircraft that can spray the pesticide while flying. We can assume that a typical
crop duster can carry around 1 m® = 1000L of pesticide and cover an area of 1kmx 1km per
flight. Then, we can estimate the amount of pesticide used per square metre per year:

1000L
Pesticide needed every year = T/l}{(erf =1x107% L/m* - year. (27)
For the entirety of the Central Valley, we need
10" m? x 107% L/m” - year = 107 L/year. (28)

Assuming that the density of pesticide is the same as water (p = 1kg/L), this is about 5 x 107
kg of pesticide used every year.

(d) Do NOT do this part until you have done parts (a) — (c). Look up some source of data
on each of these three questions and compare your results to the data. Please do not redo
your estimate. Cite your sources clearly.

Solution: For water usage, based on data from Figure 8 of California Agricultural Produc-
tion and Irrigated Water Use, we can calculate the total agricultural water used in Central
Valley is around 25 million acre feet which is around 3x10'° m? = 3 x 10'3 L which is similar
to our estimation.

For nitrogen fertilizer usage, based on data from Figure 1 of Nitrogen Fertilizer Loading to
Groundwater in the Central Valley, we can estimate that total nitrogen usage in Central
Valley is about 400 Gigagram which is about 4 x 10® kg which is very close to our estimation
of 5 x 10® kg.

For pesticide usage, based on Agricultural Pesticide Mapping Tool we know that average
pesticide usage is about 2.5 Ibs/acre. Thus, the estimation of total pesticide usage is around
2.5 lIbs/acre x 0.45 kg/lbs x 0.00025 acre/m? x 10 m?= 2.8 x 10° kg which is slightly less
than our estimation.
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https://fas.org/sgp/crs/misc/R44093.pdf
https://fas.org/sgp/crs/misc/R44093.pdf
http://groundwaternitrate.ucdavis.edu/files/173452.pdf
http://groundwaternitrate.ucdavis.edu/files/173452.pdf
https://www.trackingcalifornia.org/pesticides/pesticide-mapping-tool

