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I. EMPIRICAL FUNCTIONS

To describe the growth of cumulative number of infected cases due to an infectious dis-

ease, like COVID-19, empirical functions in explicit forms are widely used1. Here, an in-

complete list includes the linear, quadratic, cubic, exponential, Logistic, Hill’s, Gompertz’s
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and Richards’ functions, whose explicit forms are listed as follows.

Linear function : C(t) = a1t+ a0, (1)

Quadratic function : C(t) = a2t
2 + a1t+ a0, (2)

Cubic function : C(t) = a3t
3 + a2t

2 + a1t+ a0, (3)

Exponential function : C(t) = Keγt, (4)

Logistic function : C(t) =
K

1 + e−γ(t−tc)
, (5)

Hill′s function : C(t) =
a1 − a2

1 + (t/tc)p
+ a2, (6)

Gompertz′s function : C(t) = Ke−e
−γ(t−tc)

, (7)

Richards′ function : C(t) =
K

[1 + βe−γ(t−tc)]1/β
. (8)

II. STATISTICAL METHODS FOR ESTIMATING THE BASIC

REPRODUCTION NUMBER

When a population is totally susceptible, the basic reproduction number R0 is defined

as the average number of secondary infectious cases produced by one infectious case during

a disease outbreak. The estimation of R0 plays a key role in the study of epidemics of

infectious diseases. In literature, there are many different statistical methods for estimating

the basic reproduction number R0
2. And some of them were implemented with “R0 package”

in R3.

A. Exponential growth

Exponential growth estimation method assumes that the number of infected cases in-

creases exponentially in the early stage of infection. In this case, the reproduction number

is given by4

R0=
1

M (−γ)
=

1∫∞
0
e−γτω(τ)dτ

, (9)

where, r is the growth rate and M is the moment generating function of the generation time

distribution ω(τ). The latter is generally assumed to follow the Gamma distribution.
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B. Maximum likelihood estimation

This method assumes the number of infected cases generated from the first case follows

the Poisson distribution, whose mean is directly proportional to the basic reproduction

number and can be estimated by using the maximum likelihood method5.

ll (R0) =
T∑
i=1

log

(
e−µiµi

dIi

dIi!

)
, (10)

µi = R0

i∑
k=1

dIi−kωk, (11)

in which ll(R0) is the likelihood depending on R0. µi and dIi = Ii − Ii−1 are the number

of daily new infected cases and incident cases at discrete time points i, wi is the generation

time distribution. This method also requires the period during which exponential growth is

happening to be identified from the data by statistical tools.

C. Sequential Bayesian method

The sequential Bayesian method is also called real-time Bayesian, which starts with a non-

informative prior and tries to predict the posterior distribution of the basic reproduction

number R0 by referring to the Bayesian formula6.

P (R0|dI0, · · · , dIi+1) =
P (dIi+1|R0, dI0, · · · , dIi)P (R0|dI0, · · · , dIi)

P (dI0, · · · , dIi)
, (12)

where P (dIi+1|R0, dI0, · · · , dIi) is the likelihood of observing incident cases at time i+1 given

the value of R0 and past observations of incident cases from time 0 to i, P (R0|dI0, · · · , dIi)

is a prior distribution of the basic reproduction number, and P (dI0, · · · , dIi) is the joint

probability of observing the incident cases.

The number of daily new infected cases is also assumed to be Poisson distributed with

mean

µi = dIi−1e
γ(R0−1). (13)

D. Estimation of time dependent reproduction numbers

This method computes reproduction numbers by averaging over all transmission networks

compatible with observations7. The relative likelihood pij that a case onset at time i was
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infected by a case onset at time j is given by

pij =
ωi−j∑i−1
k=0 ωi−k

, (14)

from which the time-dependent effective reproduction number for case j is defined as Rj =∑
i pij, and the basic reproduction number is the average of all Rj, i.e. R0 = 1

T

∑T
j=1Rj.

(a)Shanghai from 01/20/2020 to 02/28/2020.

(b)Effective reproduction number for six provinces/cities in China based on the method of time dependent

reproduction number.

FIG. 1. Basic/effective reproduction number for COVID-19 derived from four different statistical

methods.
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E. Forecasting the epidemic trends

The basic goal of statistical methods is to estimate the basic reproduction number. So

when we plan to make predictions on the progression of epidemics, we need to combine them

with further assumptions on the dynamics. A most widely adopted one is the exponential

growth, which assumes the number of infected populations grows exponentially with the

time and the exponent γ can be obtained from the basic reproduction number R0.

R0=
1

M (−γ)
=

1∫∞
0
e−γτω(τ)dτ

.

In the current study, we assume the generating time distribution ω(t) obeys the Gamma

distribution Γ (k, θ) (see Fig. 1), whose moment generating function is explicitly known as

M (t) = (1− tθ)−k;∀t < 1

θ
(15)

From it, we immediately see γ = (R
1/k
0 − 1)/θ. Then inserting γ into either the recurrence

formula µi = dIi−1e
γ(R0−1) (no free parameter, see Fig. 2) or the Logistic function (two

more free parameters, figure in the main text), the progression of epidemics is fitted and

predicted.

FIG. 2. Forecast of the COVID-19 epidemic in Shanghai from 01/20/2020 to 02/28/2020 based on

data of first 10 (early), 20 (middle) and 30 (late) days respectively. The upper column shows the

results for linear, quadratic, cubic and exponential functions, while the lower column gives those

for four different statistical methods combined with the exponential growth model.
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III. DYNAMICAL EQUATIONS

Without considering time delay and spatial inhomogeneity, ordinary differential equa-

tions are most widely used models for describing the procedure of epidemics caused by

infectious diseases. Here we summarize six different dynamical models reported in literature

for studying COVID-19.

A. SIR model

In the classical SIR model, there are three different populations, that are S(t), I(t) and

R(t) denoting at time t the respective number of the susceptible cases, infectious cases (with

infectious capacity and not yet recovered) and recovered cases (recovered and not be either

infectious or infected once again). Their relations are characterized by the following ODEs.

dS(t)

dt
= −βSI, (16)

dI(t)

dt
= βSI − δI, (17)

dR(t)

dt
= δI. (18)

Here coefficients β and δ represent the infection rate and recovery rate separately.

B. SEIR model

To account for the infected cases which are still in a latent period and not yet be infectious,

a new exposed population E(t) is introduced into the SEIR model8. Correspondingly, the

ODEs for the SIR model are generalized to

dS(t)

dt
= −βSI, (19)

dE(t)

dt
= βSI − γE, (20)

dI(t)

dt
= γE − δI, (21)

dR(t)

dt
= δI, (22)

in which the coefficient γ denotes the transition rate of exposed individuals to the infected.
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C. SEIR-QD model

To take the effects of quarantine and self-protection into consideration, Peng et al.9

proposed to generalize the classical SEIR model by introducing a new quarantined state

between infectious and recovery. The numbers of death and unsusceptible are denoted as

D(t) and SA(t) separately.

dS(t)

dt
= −βSI − αS, (23)

dE(t)

dt
= βSI − γE, (24)

dI(t)

dt
= γE − λI, (25)

dQ(t)

dt
= λI − δQ− κQ, (26)

dR(t)

dt
= δQ, (27)

dD(t)

dt
= κQ, (28)

dSA(t)

dt
= αS. (29)

in which coefficients α, λ, δ, κ denote the protection rate of susceptible individuals, the tran-

sition rate of infectious individuals to the quarantined infected class, the recovery rate and

the death rate respectively.

D. SEIR-AHQ model

To incorporate appropriate compartments relevant to interventions such as quarantine,

isolation and treatment, Tang et al.10 generalized the SEIR model and stratified the popula-

tions as susceptible (S), exposed (E), infectious but not yet symptomatic (pre-symptomatic)

(A), infectious with symptoms (I), hospitalized (H) and recovered (R) compartments, and

further stratified the population to include quarantined susceptible (Sq), isolated exposed
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(Eq) and isolated infected (Iq) compartments.

dS(t)

dt
= −(βc+ cq(1− β))S(I + θA) + λSq, (30)

dE(t)

dt
= βc(1− q)S(I + θA)− σE, (31)

dI(t)

dt
= σρE − (δI + α + γI)I, (32)

dA(t)

dt
= σ(1− ρ)E − γAA, (33)

dSq(t)

dt
= cq(1− β)S(I + θA)− λSq, (34)

dEq(t)

dt
= βcqS(I + θA)− δqEq, (35)

dH(t)

dt
= δII + δqEq − (α + γH)H, (36)

dR(t)

dt
= γII + γAA+ γHH. (37)

In above model, parameters {c, β, q, σ, λ, ρ, δI , δq, γI , γA, γH , α} represent the contact rate,

probability of transmission per contact, quarantined rate of exposed individuals, transition

rate of exposed individuals to the infected, rate at which the quarantined uninfected con-

tacts were released into the wider community class, probability of having symptoms among

infected individuals, transition rate of symptomatic infected individuals to the quarantined

infected class, transition rate of quarantined exposed individuals to the quarantined infected

class, recovery rates of symptomatic infected individuals, asymptomatic infected individuals

and quarantined infected individuals, as well as disease-induced death rate.

E. SEIR-PO model

By incorporating the public opinion on COVID-19, Zhang et al. further classified the pop-

ulations of susceptible and exposed in SEIR model into unconscious (SU , EU) and conscious
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(SA, EA) based on their different knowledge on epidemics and self-protection.

dSU(t)

dt
= −βSU(η1I + η2E

A + η3E
U)− αSU , (38)

dSA(t)

dt
= −ηβSA(η1I + η2E

A + η3E
U) + αSU , (39)

dEU(t)

dt
= βSU(η1I + η2E

A + η3E
U)− αEU − γEU , (40)

dEA(t)

dt
= ηβSA(η1I + η2E

A + η3E
U) + αEU − γEA, (41)

dI(t)

dt
= γ(EU + EA)− δI, (42)

dR(t)

dt
= δI, (43)

where parameters {γ, δ, β, η, η1, η2, η3, α} denote the transition rate of exposed individuals to

the infected, recovery rate of infected individuals, infection rate of unconscious susceptible

population, reduced infection ratio of conscious susceptible individuals, effective infection

factors of infectious individuals, unconscious and conscious exposed individuals, as well as

the spreading rate of knowledge about COVID-19 between individuals.

IV. EVALUATION CRITERIA

There are several criteria to evaluate the performance of regression models. Suppose xi

and yi to be the true values and predicted ones separately.

(1) The root mean square error (RMSE) is defined as

RMSE =

√√√√ 1

N

N∑
i=1

(xi − yi)2. (44)

(2) The Akaike information criterion (AIC) was introduced by Akaike in the early 1970s11.

It is based on the concept of entropy, and incorporate the model complexity and its goodness

of fit together.

AIC = 2k − 2 ln(L), (45)

in which k is the total number of free parameters in a model, while L is the likelihood

function. Under the assumption of Gaussian distributions for residues, the AIC reduces to

AIC = 2k + 2N ln(RMSE).
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To eliminate the dependence on sample size, McQuarrie and Tsai12 introduced AICc as

AICc = 2 ln(RMSE) + (N + k)/(N − k − 2). (46)

(3) In the current study, the robustness index (RB) is defined as ratio as the ratio between

the minimum number of confirmed infected cases at the end of prediction time and its

maximum within the 95% confidence region.

(4) There are also many other quantities which can be used to characterize the epidemic

dynamics. One is the inflection point (IFP)2, which is defined as the time point when

the daily new infected cases reaches its maximum, or when the second order derivative of

cumulative infected cases becomes non-positive. The other is the C95 point, which is the

time point when the cumulative infected cases reaches 95% of its final value.
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to estimate reproduction numbers for epidemic outbreaks. BMC medical informatics and

decision making, 12(1):147, 2012.

4Jacco Wallinga and Marc Lipsitch. How generation intervals shape the relationship between

growth rates and reproductive numbers. Proceedings of the Royal Society B: Biological

Sciences, 274(1609):599–604, 2007.

5Laura Forsberg White and Marcello Pagano. A likelihood-based method for real-time

estimation of the serial interval and reproductive number of an epidemic. Statistics in

medicine, 27(16):2999–3016, 2008.

6Luis MA Bettencourt and Ruy M Ribeiro. Real time bayesian estimation of the epidemic

potential of emerging infectious diseases. PLoS One, 3(5), 2008.

7Jacco Wallinga and Peter Teunis. Different epidemic curves for severe acute respiratory

11



FIG. 3. The correlation between RMSE of training data set and RMSE of testing data set for

five dynamical models based on first 10 (early), 20 (middle) and 30 (late) days data of COVID-19

epidemic in Shanghai from 01/20/2020 to 02/28/2020.

syndrome reveal similar impacts of control measures. American Journal of epidemiology,

160(6):509–516, 2004.

8Huwen Wang, Zezhou Wang, Yinqiao Dong, Ruijie Chang, Chen Xu, Xiaoyue Yu, Shuxian

Zhang, Lhakpa Tsamlag, Meili Shang, Jinyan Huang, et al. Phase-adjusted estimation of

12



FIG. 4. The correlation between RMSE of training data set and RMSE of testing data set for

five dynamical models based on COVID-19 epidemic data from 01/20/2020-02/28/2020 for six

provinces/cities mentioned in the main text.

the number of coronavirus disease 2019 cases in wuhan, china. Cell Discovery, 6(1):1–8,

2020.

9Liangrong Peng, Wuyue Yang, Dongyan Zhang, Changjing Zhuge, and Liu Hong. Epidemic

analysis of covid-19 in china by dynamical modeling. arXiv preprint arXiv:2002.06563,

2020.

10Biao Tang, Xia Wang, Qian Li, Nicola Luigi Bragazzi, Sanyi Tang, Yanni Xiao, and

Jianhong Wu. Estimation of the transmission risk of the 2019-ncov and its implication for

public health interventions. Journal of Clinical Medicine, 9(2), 2020.

11Hirotugu Akaike. A new look at the statistical model identification. IEEE transactions on

automatic control, 19(6):716–723, 1974.

12Allan D. R. Mcquarrie and Chih Ling Tsai. The Univariate Regression Model. 1998.

13


