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The spreading of evolutionary novelties across populations is the
central element of adaptation. Unless populations are well mixed
(like bacteria in a shaken test tube), the spreading dynamics depend
not only on fitness differences but also on the dispersal behavior of
the species. Spreading at a constant speed is generally predicted
when dispersal is sufficiently short ranged, specifically when the
dispersal kernel falls off exponentially or faster. However, the case
of long-range dispersal is unresolved: Although it is clear that even
rare long-range jumps can lead to a drastic speedup—as air-traffic–
mediated epidemics show—it has been difficult to quantify the
ensuing stochastic dynamical process. However, such knowledge
is indispensable for a predictive understanding of many spreading
processes in natural populations. We present a simple iterative scal-
ing approximation supported by simulations and rigorous bounds
that accurately predicts evolutionary spread, which is determined
by a trade-off between frequency and potential effectiveness of
long-distance jumps. In contrast to the exponential laws predicted
by deterministic “mean-field” approximations, we show that the
asymptotic spatial growth is according to either a power law or a
stretched exponential, depending on the tails of the dispersal ker-
nel. More importantly, we provide a full time-dependent descrip-
tion of the convergence to the asymptotic behavior, which can be
anomalously slow and is relevant even for long times. Our results
also apply to spreading dynamics on networks with a spectrum of
long-range links under certain conditions on the probabilities of
long-distance travel: These are relevant for the spread of epidemics.

long-range dispersal | selective sweeps | epidemics | range expansions |
species invasions

Humans have developed convenient transport mechanisms for
nearly any spatial scale relevant to the globe. We walk to the

grocery store, bike to school, drive between cities, or take an air-
plane to cross continents. Such efficient transport across many
scales has changed the way we and organisms traveling with us
are distributed across the globe (1–5). This has severe conse-
quences for the spread of epidemics: Nowadays, human infectious
diseases rarely remain confined to small spatial regions, but instead
spread rapidly across countries and continents by travel of infected
individuals (6).
Besides hitchhiking with humans or other animals, small living

things such as seeds, microbes, or algae are easily caught by wind
or sea currents, resulting in passive transport over large spatial
scales (7–16). Effective long-distance dispersal is also widespread
in the animal kingdom, occurring when individuals primarily dis-
perse locally but occasionally move over long distances. And such
animals, too, can transport smaller organisms.
These active and passive mechanisms of long-range dispersal

are generally expected to accelerate the growth of fitter mutants
in spatially extended populations. However, how can one estimate
the resulting speedup and the associated spatiotemporal patterns
of growth? When dispersal is only short range, the competition
between mutants and nonmutated (“wild-type”) individuals is
local, confined to small regions in which they are both present
at the same time. As a consequence, a compact mutant population
emerges that spreads at a constant speed, as first predicted by

Fisher (17) and Kolmogorov et al. (18): Such selective sweeps
are slow and dispersal is limited. In the extreme opposite limit in
which the dispersal is so rapid that it does not limit the growth of
the mutant population, the competition is global and the behavior
the same as for a fully mixed (panmictic) population: Mutant
numbers grow exponentially fast. It is relevant for our purposes
to note that in both the short-range and extreme long-range cases,
the dynamics after the establishment of the initial mutant popula-
tion are essentially deterministic.
When there is a broad spectrum of distances over which dis-

persal occurs, the behavior is far more subtle than that of either
of the well-studied limits. When a mutant individual undergoes a
long-distance dispersal event—a jump—from the primary mu-
tant population into a pristine population lacking the beneficial
mutation, this mutant can found a new satellite subpopulation,
which can then expand and be the source of further jumps, as shown
in Fig. 1 B and C. Consequently, long-range jumps can dramatically
increase the rate of growth of the mutant population. Potentially,
even very rare jumps over exceptionally large distances could be
important (14). If this is the case, then the stochastic nature of
the jumps that drive the dynamics will be essential.
Although evolutionary spread with long-range jumps has been

simulated stochastically in a number of biological contexts (6, 8,
19–23), few analytic results have been obtained on the ensuing
stochastic dynamics (19, 24–26). Most analyses have resorted to
deterministic approximations (27–35), which are successful for
describing both the local and global dispersal limits. However, in
between these extreme limits, stochasticity drastically changes
the spreading dynamics of the mutant population. This is par-
ticularly striking when the probability of jumps decays as a power
law of the distance. Just such a distance spectrum of dispersal is
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characteristic of various biological systems (36–41), including hu-
mans (3). We will show that the behavior is controlled by a trade-
off between frequency and potential effectiveness of long-distance
jumps and the whole spectrum of jump distances can matter. The
goal of this paper is to develop the theory of stochastic spreading
dynamics when the dispersal is neither short range nor global.
Long-distance dispersal can occur either on a fixed network or

more homogeneously in space. For simplicity, we focus on the
completely homogeneous case and then show that many of the
results also apply for an inhomogeneous transportation network
with hubs between which the long-distance jumps occur. For defi-
niteness, we consider for most of the paper the evolutionary sce-
nario of the spread of a single beneficial mutation, but, by analogy,
the results can be applied to other contexts, such as the spread of
infectious disease or of invasive species.

Basic Model
The underlying model of spatial spread of a beneficial mutant is a
population in a d-dimensional space with local competition that
keeps the population density constant at ρ̂ and equipped with
a probability that any individual jumps to any particular point
a distance r away of JðrÞ per time per area, per length, or per
volume. At a very low rate, mutants can appear that have a se-
lective advantage, s, over the original population. A lattice version
of this model is more convenient for simulations (and for aspects
of the analysis): Each lattice site represents a “deme” with fixed
population size, n̂ � 1=s with the competition only within a deme
and the jump migration between demes. Initially, a single mutant
occurs and if, as occurs with probability proportional to s, it
survives stochastic drift to establish, it will take over the local
population. When the total rate of migration between demes is
much slower than this local sweep time, the spatial spread is
essentially from demes that are all mutants to demes that are all
of the original type.
Short jumps result in a mutant population that spreads spa-

tially at a roughly constant rate. However, with long-range jumps,
new mutant populations are occasionally seeded far away from
the place from which they came, and these also grow. The con-
sequences of such long jumps are the key issues that we need to

understand. As we shall see, the interesting behaviors can be
conveniently classified when the jump rate has a power-law tail at
long distances, specifically, with JðrÞ∼ 1=rd+μ (with positive μ
needed for the total jump rate to be finite). Crudely, the behavior
can be divided into two types: linear growth of the radius of the
region that the mutants have taken over and faster than linear
growth. In Fig. 1, these two behaviors are illustrated via simu-
lations on 2D lattices. In addition to the mutant-occupied re-
gion at several times, shown are some of the longest jumps that
occur and the clusters of occupied regions that grow from these.
In Fig. 1A, there are no jumps that are of comparable length to
the size of the mutant region at the time at which they occur,
and the rate of growth of the characteristic linear size ℓðtÞ of the
mutant region—loosely its radius—is roughly constant in time;
i.e., ℓðtÞ∼ t. In Fig. 1 B and C, JðrÞ is longer range and very long
jumps are observed. These result in faster-than-linear growth of
the radius of the mutant region, as shown. Before developing
analytic predictions for the patterns of evolutionary spread, we
report our simulation results in detail.

Results
Simulated Spreading Dynamics. We have carried out extensive sim-
ulations of a simple lattice model, in which the sites form either a
one-dimensional, of length L, or two-dimensional L×L square
array. Boundary conditions are chosen to be periodic, but typically
do not matter unless the filling fraction becomes of order one.
As it is the spreading dynamics at long times that we are in-
terested in, we assume that the local sweeps in a deme are fast
compared with migration. We can then ignore the logistic growth
process within demes, so that when jumps occur and establish
a new mutant population, it is saturated in the new deme by the
next time step. Therefore, it is convenient to lump together the
probability of an individual to jump, the density of the population
from which the jumps occur, and the probability (proportional
to s) that the mutant establishes a new population: We define
GðrÞ≡ sρ̂JðrÞ so that ddrddr′Gðjx− yjÞ is the rate at which a satu-
rated mutant population near x nucleates a mutant population
near y. In each computational time step, we pick a source and
target site randomly such that their distance r is sampled from the

A B C 

Fig. 1. Evolutionary spread sensitively depends on the dispersal behavior of individuals. For a broad class of models with “short-range migration,” the
mutant subpopulation expands at a constant speed that characterizes the advance of the mutant–nonmutant boundary. With long-range dispersal the spread
is much faster. Shown are 2D simulations for the simple case of a jump distribution that has a broad tail characterized by a power-law exponent −ðμ+ 2Þ. A–C
show the distribution of the mutant population at the time when half of the habitat is occupied by mutants. The color of a site indicates whether a site was
filled in the first (black), second (red), or last (blue) third of the total run time. (A) When the jump distribution decays sufficiently rapidly, μ> 3, the asymptotic
growth resembles, in two dimensions, a disk growing at a μ–dependent constant speed. (B) For 2< μ< 3, satellite seeds become clearly visible and these drive
superlinear power-law growth. These seeds were generated by long-range jumps, as indicated by arrows. (C) The dynamics are changed drastically for
0< μ< 2, becoming controlled by very long-distance jumps, which seed new expanding satellite clusters. As a result of this “metastatic” growth, the spreading
is faster than any power law, although markedly slower than exponential. A–C were created by the simulations described in the main text, with parameters
μ= 3:5 in A, μ= 2:5 in B, and μ= 1:5 in C. (To avoid any boundary effects, the lattice size was chosen to be much larger than depicted regions.)
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(discretized) jump distribution GðrÞ—with the ddr a lattice site. If
the source site is a mutant and the target site a wild type, the
identity of the target site is updated to mutant. We measure time
in units of Ld time steps. The lattice sizes are chosen large enough
(up to Ld ∼ 109) so that we can observe the growth dynamics over
several orders of magnitude undisturbed by boundary effects. See
SI Text, section SI1 for more details on the simulation algorithm.
The growth of mutant populations generated by our simula-

tions is best visualized in a space–time portrait. Fig. 2 A and B
shows the overlaid space–time plots of multiple runs in the regimes
1:5< μ< 2 and 0:8< μ< 1:1, respectively. Fig. 3 shows the growth
dynamics of the mutant population over large timescales and length
scales for various values of μ. For μJ 1:4, the dynamics clearly
approach a power law. For μK 0:7, the simulations are consistent
with stretched exponentials. The intermediate regime 0:7< μ< 1:3
is elusive, as we cannot extract a clear asymptotic behavior on the
timescales feasible in simulations. The behavior in two dimensions is
qualitatively similar, as shown in Fig. S1. Lowering the rate of long-
range jumps compared to short-range jumps between neighboring
sites leads to a delayed cross-over to the super-linear regimes, as
shown in Fig. S2.
To explain these dynamics in detail, we develop an analytical

theory that is able to predict not only the asymptotic growth dy-
namics but also the crucial transients.

Breakdown of Deterministic Approximation. Traditionally, analyses
of spreading dynamics start with a deterministic approximation
of the selective and dispersal dynamics—ignoring both stochas-
ticity and the discreteness of individuals. To set up consideration
of the actual stochastic dynamics, we first give results in this
deterministic approximation and show that these exhibit hints of
why they break down.
When the jump rate decreases exponentially or faster with

distance, the spread is qualitatively similar to simple diffusive
dispersal and the extent of the mutant population expands lin-
early in time. However, when the scale of the exponential falloff
is long, the speed, v, is faster than the classic result for local
dispersal (17, 18), v= 2

ffiffiffiffiffiffi
Ds

p
, which depends only on the diffusion

coefficient, D= ð1=2dÞ R r2JðrÞddr: Specifically, consider JðrÞ=
cdðD=2bd+2Þe−r=b with coefficient cd so that the diffusion constant
D is independent of the characteristic length, b, of the jumps. A
linear deterministic approximation for the mutant population
density in a spatial continuum and a saddle point analysis to
find the distance at which the population density becomes sub-
stantial yield, as for the conventional diffusive case, the correct
asymptotic speed. The resulting expression for the speed is mod-
ified from the diffusive result by a function of the only dimen-
sionless parameter, b=

ffiffiffiffiffiffiffiffi
D=s

p
. For b � ffiffiffiffiffiffiffiffi

D=s
p

, v≈ 2
ffiffiffiffiffiffi
Ds

p
, the

t 

t 

R 

B 

A 

Fig. 2. Stochastic growth of a mutant population over time in one dimen-
sion. Each level of shading represents a single simulation run. (A) Regime of
power-law growth. The values of μ are 2:5, 2:0, 1:75, 1:5 in order of in-
creasing darkness. Note that, in two dimensions, μ= 2:0 corresponds to the
marginal case separating linear growth ðμ> 2Þ from superlinear growth ðμ< 2Þ.
(B) Regime of very fast growth with μ near μ=1:0, which is the marginal case
separating power-law growth ðμ> 1Þ from stretched exponential growth
ðμ< 1Þ. The values of μ are 1:5, 1:25, 1:0, 0:75 in order of increasing darkness.

Fig. 3. Summary of the quantitative spreading dynamics in one spatial di-
mension. The total number, MðtÞ, of mutant sites is plotted as a function of
time t, for various long-range jump kernels. Each colored cloud represents
data obtained from 10 runs for a given jump kernel. The data are for
μ chosen from f0:6, 0:7, 0:8, 0:9, 1:0, 1:1, 1:2, 1:3, 1:4g from top to bottom.
Red dashed lines represent predictions obtained from Eq. 8 with fitted
magnitude scales for M and t. In the double-logarithmic plot at the bottom
of each plot, short blue lines indicate the predicted asymptotic power-law
behavior for μ> 1. For μ= 1:1 and μ= 1:2, the dynamics are still far away from
the asymptotic power law, which is indicative of the very slow crossover.
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diffusive predictions obtain as expected, but for b � ffiffiffiffiffiffiffiffi
D=s

p
,

v≈ bs, which is much larger.
We now provide a simple argument as to why the deterministic

approximation drastically overshoots the stochastic spreading
dynamics for broader than exponentially decaying jump kernels
JðrÞ. The origin of the very rapid spread is the feeding of the
populations far away by direct jumps from near the origin: This
immediately produces a finite population density at any location,
R. After a time of order 1=s has passed, the exponential growth
of the local population near R takes off, proportional to JðRÞest,
and further jumps to that region no longer matter much. The
time at which this local mutant population saturates suggests that
the radius of the region taken over by the mutant population,
ℓðtÞ, is given simply by J½ℓðtÞ�est ∼ 1. In the deterministic approx-
imation, this is a lower bound as seeding by intermediate jumps
(as occurs especially for b∼

ffiffiffiffiffiffiffiffi
D=s

p
or smaller) can only make the

spread faster. For the marginal case of exponential dispersal
discussed above, this simple approximation yields v= bs, correct
for large b (i.e., � ffiffiffiffiffiffiffiffi

D=s
p

), implying that very long jumps directly
to R indeed dominate for large distances R. (For small b, in
contrast, the speed is much faster than bs because the spread is
dominated by multiple small jumps: The diffusion approximation
is then good.)
If JðrÞ has a longer-than-exponential tail (42), in particular,

JðrÞ∼ 1=rd+μ (43), the spread in the deterministic approximation
becomes exponentially fast: J½ℓðtÞ�≈ e−st yields ℓðtÞ∼ expðst=ðd+
μÞÞ. Thus, the total mutant population is ∼ expðdst=ðd+ μÞÞ.
This grows almost as fast as in a fully mixed population, with the
population growth rate slower only by a factor of d=ðd+ μÞ.
This factor approaches unity as μ→ 0, the point at which the
spatial structure becomes irrelevant as the jumps typically
span the full system.
We can now understand why the deterministic approximation

fails miserably for very long-range jumps. In the time, ∼ 1=s,
during which the jumps into a region from near the origin are
supposed to lead to exponential growth of the local population
even a large distance R, away, the expected total number of jumps
to the whole region R or farther from the origin is only of order
1=ðsrμÞ: Thus the probability that any jumps have occurred is
very small for large R and the deterministic approximation must
fail (19, 44).
With local dispersal, the deterministic approximation is a good

starting point with only modest corrections to the expansion speed
at high population density, the most significant effect of stochas-
ticity being fluctuations in the speed of the front (45). At the
opposite extreme of jump rate independent of distance, the de-
terministic approximation is also good with the mutant pop-
ulation growing as aest and fluctuations causing only stochastic
variability and a systematic reduction in the coefficient, a: These

arise from early times when the population is small. It is thus
surprising that in the regimes intermediate between these two, the
deterministic approximation is not even qualitatively reasonable.

Iterative Scaling Argument.We assume that, at long times, most of
the sites are filled out to some distance scale ℓðtÞ and that the
density decreases sufficiently steeply for larger distances, such
that the total mutant population, MðtÞ, is proportional to ℓdðtÞ.
The validity of this assumption follows from more accurate
analyses given in SI Text, section SI3. We call the crossover scale
ℓðtÞ the core radius or “size” of the mutant population.
In the dynamical regimes of interest, the core population grows

primarily because it “absorbs” satellite clusters, which themselves
were seeded by jumps from the core population. We now show
that the rate of seeding of new mutant satellite clusters and the
growth of the core populations by mergers with previously seeded
clusters have to satisfy an iterative condition that enables us to
determine the typical spreading dynamics of the mutant population.
It is convenient to illustrate our argument using a space–time

diagram, Fig. 4, in which the growth of the core has the shape of
a funnel. Now consider the edge of this funnel at time T (gray
circle in Fig. 4). The only way that this edge can become popu-
lated is by becoming part of a population subcluster seeded by an
appropriate long-range jump at an earlier time. To this end, the
seed of this subcluster must have been established somewhere in
the inverted blue funnel in Fig. 4. This “target” funnel has the same
shape as the space–time portrait of the growing total population,
but its stem is placed at ðℓðTÞ;TÞ and the mouth opens backward in
time. Note that if ℓðtÞ grows faster than linearly, space–time plots of
the growing cluster and the funnel have concave boundaries:
This necessitates a jump from the source to the funnel of length
much longer than ℓðT=2Þ, as shown.
Now, we argue the consistency of growth and seeding requires

that there is, on average, about one jump from the source to the
target funnel: If it were unlikely that even one jump leads from
the source to the target region, then the assumed shape for the
source funnel would be too large and its edge (gray circle in Fig.
4) would, typically, not be occupied. Conversely, if the expected
number of jumps was much larger than 1, then seeding would
occur so frequently that a much larger funnel than the assumed
one would typically be filled by the time T.
The condition of having, on average, about one jump from

source to target region can be stated mathematically as

ZT

0

dt
Z
BℓðtÞ

ddx
Z

BℓðT − tÞ

ddy GðjℓðTÞe+ y− xjÞ∼ 1 [1]

in d dimensions, where Bℓ denotes a d-dimensional ball of radius
ℓ centered at the origin, and we have taken the point of interest
to be R= eℓðTÞ with e a unit vector in an arbitrary direction. The
kernel GðrÞ represents the rate per d-dimensional volume of
(established) jumps of size r. Eq. 1 mathematizes the space–time
picture of Fig. 4: To calculate the expected number of jumps
from the red source to the blue target funnel, we need a time
integral,

R T
0 dt, and two space integrals—one for the source funnel,R

BℓðtÞ
ddx, and one for the target funnel,

R
BℓðT − tÞ

ddy—over the prob-
ability density GðjℓðTÞe+ y− xjÞ to jump from the source point x
to the target point ℓðTÞe+ y.
Note that the above intuitive picture is further sharpened in SI

Text, section SI2 and justified by developing rigorous bounds in
SI Text, section SI3.

Asymptotic Results for Power-Law Jumps. We now show that the
asymptotic growth dynamics are essentially constrained by the

Fig. 4. Sketch of the growth of the compact core of a cluster (red) due to
long-range jumps. For the (gray) point at distance ℓðtÞ to be occupied at time
t, a seed typically must become established somewhere in the blue space–
time region (“target funnel”) by means of a long-range jump (black arrow)
from the red “source” region. This schematic leads to the iterative scaling
approximation in Eq. 1. Note that the concavity of the source-funnel geometry,
leading to a gap between red and blue regions, is key to our arguments
and enables neglecting effects of jumps into the gap region.
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above iterative scaling argument. Specifically, although the argu-
ment is more general, we consider a power-law jump distribution

GðrÞ≈ e

rd+μ
with μ< d+ 1 [2]

for large enough r. The prefactor « in GðrÞ amalgamates all of
the factors that determine the rate density of successful jumps,
including population density and establishment probability.
For the intermediate-range case d< μ< d+ 1, Eqs. 1 and 2

exhibit the asymptotic scaling solution

ℓðtÞ∼AμðetÞ1=ðμ−dÞ   ; [3]

the form of which could have been guessed by dimensional
analysis. Inserting the ansatz [3] into Eq. 1 determines the pre-
factor Aμ in this iterative scaling approximation, up to an order-
unity coefficient: Details are in SI Text, section SI2.B. Interest-
ingly, the value Aμ depends very sensitively on μ and runs from
0 to ∞ as μ passes through the interval from d to d+ 1. This can
be seen in Fig. S3, where Aμ is plotted as a function of μ for d= 1:
It drops very steeply, as Aμ ∼ 2−2=ðμ− 1Þ2 , for μ↘1, and diverges as
Aμ ∼ 1=ð2− μÞ for μ↗2. As we discuss below, these singularities
are a manifestation of intermediate asymptotic regimes that lead
to very slow convergence to the asymptotic behavior.
We now turn to the (very) long-range case, 0< μ< d, for which

a direct solution to [1] cannot be found (and the dimensional
analysis argument gives nonsense). However, much can be
learned by approximating [1] using G½jℓðTÞe+ y− xj�≈G½ℓðTÞ�,
anticipating the very rapid growth and thus likely smallness of x
and y compared with ℓðTÞ:

G½ℓðTÞ�
ZT

0

dt ℓ dðtÞℓ dðT − tÞ∼ 1  [4]

(ignoring two factors from the angular integrations). With ℓðtÞ
growing subexponentially, the largest contributions will come
from t≈ ð1=2ÞT, which reflects the approximate time reversal
symmetry of the source and target funnels in Fig. 4. Once we have
found the form of ℓðtÞ, the validity of the ansatz can be tested by
checking whether the ℓðTÞ is much larger than ℓðT=2Þ. Indeed, for
μ< d the solution to [4] is a rapidly growing stretched exponential,

ℓðtÞ∼ exp
�
Bμtη

�
with η=

log½2d=ðd+ μÞ�
log 2

< 1; [5]

which can be checked by direct insertion into Eq. 4. Note that as
μ↘0, η↗1 and ℓðtÞ grows exponentially as for a flat distribution of
long-range jumps that extends out to the size of the system: i.e.,
the globally mixed limit. In the opposite limit of d− μ small,
η∼ d− μ and the coefficient Bμ diverges as shown below. We
note that the asymptotic stretched-exponential growth for μ< d
also arises in models of “chemical distance” and certain types of
spatial spread for network models with a similar power-law dis-
tribution of long-distance connections: However, the prefactors
in the exponent are different (24, 46). We discuss the connec-
tions between these in SI Text, section SI3.
For the marginal case, μ= d, the asymptotic behavior is simi-

larly found to be

ℓðtÞ∼ exp
�

log2ðtÞ
4d logð2Þ

�
: [6]

We show below that this behavior also represents an important
intermediate asymptotic regime that dominates the dynamics

over a wide range of times for μ close to d: This is the source of
the singular behavior of the coefficients Aμ and Bμ in this regime.
Our source-funnel argument obviously neglects jumps that

originate from the not fully filled regions outside the core radius
ℓðtÞ. An improved version of the funnel argument is presented in
SI Text, section SI2.E, which also allows us to estimate the prob-
ability of occupancy outside the core region. Further, we present
in SI Text, section SI3 outlines of rigorous proofs of lower and
upper bounds for the asymptotic growth laws in one dimension,
including the slow crossovers near the marginal case. The linear
growth for μ> 3 in one dimension has been proved by Mollison
(19). After the present paper was essentially complete, we became
aware of a recent preprint by Chatterjee and Dey (26) who ob-
tained rigorous bounds in all dimensions for the leading asymp-
totic behaviors in the three superlinear regimes. Our bounds are
considerably tighter than theirs, including the coefficient and
leading corrections to the asymptotic behavior in the marginal
case and the absence of logarithmic prefactors in the power-law
regime: Comparisons are discussed in SI Text, section SI3. More
importantly, our bounds are explicitly for the iterative scaling
analyses, thereby justifying them (and future uses of them). Our
bounds hence include the full crossovers for μ near d (in one di-
mension), rather than just the asymptotic results: As we next show,
understanding these crossovers is essential.

Crossovers and Beyond Asymptopia.Asymptotic laws are of limited
value without some understanding of their regime of validity,
especially if the approach to the asymptotic behavior is slow. And
such knowledge is crucially needed to interpret and make use of
results from simulations.
Assuming that long jumps are typically much rarer than short

jumps, they will become important only after enough time has
elapsed that there have been at least some jumps of order ℓðtÞ.
This condition can be used to determine a crossover time and
length scale from linear to superlinear growth (SI Text,
section SI2.A). For the purpose of this section, it is convenient
to measure time and length in units of these elementary
crossover scales.
At times much longer than 1 (in rescaled time), we expect

another slow crossover close to the boundary between the
stretched-exponential and power-law regimes. Thus, we must take
a closer look at the dynamics in the vicinity of the marginal case,
μ= d. As μ↘d, the integrand in Eq. 4 develops a sharp peak at
t=T=2: half-way between the bounds of the integral. Laplace’s
method can then be used to approximate the integral leading to
a simplified recurrence relation for the rescaled core radius ℓðtÞ,

ℓd+μðtÞ∼ t ℓ
� t
2

�2d
: [7]

This is good only to a numerical factor of order unity that can be
eliminated by rescaling t and to a larger logarithmic factor asso-
ciated with the narrowness of the range of integration and its
dependence on t and μ− d. The associated subdominant correc-
tions, analyzed in SI Text, section SI2.C, are negligible if we focus
on the behavior on logarithmic scales in space and time—natural
given their relationships. Defining φ≡ log2ðℓÞ and z≡ log2ðtÞ and
taking the binary logarithm, log2, of Eq. 7 yields a linear recur-
rence relation that can be solved exactly (SI Text, section SI2.B).
Rescaling ℓ can be used to make φð0Þ= 0, whence

δ2

2d
φðzÞ≈ δz

2d
+
	
1+

δ

2d


−z
− 1; [8]

where we introduced the variable δ= μ− d, which measures the
distance to the marginal case.
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The asymptotic scaling for δ> 0 reproduces the earlier pre-
dicted power-law regime [3] and yields the prefactor logAμ ≈
−2d logð2Þ=δ2, up to correction that is subdominant for small δ
(compare Fig. S3). For δ< 0, the asymptotics yields the stretched
exponential in [5] and fixes the prefactor Bμ ≈ 2d logð2Þδ−2, which
could not be obtained from the basic asymptotic analysis carried
out above.
The singular prefactors for δ→ 0 give warnings of breakdown

of the asymptotic results except at very long times. This peculiar
behavior is the consequence of an intermediate asymptotic re-
gime that dominates the dynamics close to the marginal case.
This leads to slow convergence to the eventual asymptotic be-
havior for μ near d. The asymptotic scaling can be observed only
on times and length such that

log2ðtÞ �
2d
jδj and log2ðℓÞ �

2d
δ2
: [9]

On smaller times, the dynamics are similar to those of the marginal
case [6]. The rapid divergence of the logarithm of the time after
which the asymptotic results obtain makes it nearly impossible to
clearly observe the asymptotic limits: In one-dimensional simula-
tions this problem occurs when jδj< 0:3, as is clearly visible in Fig. 3,
and it is likely even harder to observe in natural systems. This
underscores the need for the much fuller analysis of the spread-
ing dynamics as in [8].
Although the dynamics at moderate times will be dominated

by the initial growth characteristic of the marginal case, we ex-
pect [8] to be a good description of the universal dynamics at
large z= log2 t even when δ is small. The limit z→∞ while
ζ≡ δz=2d is fixed is particularly interesting, as the solution [8]
then reduces to a scaling form

δ2φ

2d
≈ χ

	
δz
2d



[10]

with

χðζÞ= expð−ξÞ+ ξ− 1: [11]

This scaling form allows us to test by simulations our analytic
results across all intermediate asymptotic regimes, by plotting
data obtained for different δ in one scaling plot (Fig. 5). To make
the approximation uniformly valid both in the scaling regime and
at asymptotically long times outside of it, we can simply replace,
for δ< 0, the scaling variable by ζ≡ − logðtÞη (with η defined in
[5]). The scaling form [10] will then be valid up to corrections
that are small compared with the ones given in all regimes: We
thus use this form for the scaling fits in Fig. 5, Inset, plotting data
obtained for different δ in one scaling plot, thereby testing our
solution across all intermediate asymptotic regimes.

Heterogeneities and Dynamics on Networks. Thus far we have con-
sidered spatially uniform systems, in which the jump probability
between two points depends only on their separation. However,
long-distance transport processes may be very heterogeneous.
An extreme example is airplane travel, which occurs on a network
of links between airports with mixtures of short- and long-distance
flights, plus local transportation to and from airports. A simple
model is to consider each site to have a number of connections
from it, with the probability of a connection between each pair
of sites a distance r away being CðrÞ, independently for each pair:
Note that although the network is heterogeneous, statistically the
system is still homogeneous as the connection probability does not
depend on position. If the rate at which jumps occur across a
connection of length r is HðrÞ, then, averaged over all pairs of
sites, the rate of jumps of distance r is JðrÞ=CðrÞHðrÞ. How
similar is this to a homogeneous model with the same JðrÞ, in
particular if JðrÞ∼ 1=rd+μ? If there are a large number of
possible connections along which the key jumps can occur to
get from a source region of size ∼ ℓðT=2Þ to a funnel of similar
size a distance ℓðTÞ away, then the fact that these occur to and
from only a small fraction of the sites should not matter for
the large length-scale behavior. The number of such connections
is nc ∼ ℓðT=2Þ2dCðℓðTÞÞ with, making the ansatz that, as in the
homogeneous case, TℓðT=2Þ2dJðℓðTÞÞ∼ 1 (ignoring subdominant
factors) we have nc ∼ 1=½THðℓðTÞÞ�. Thus, the condition for our
results to be valid asymptotically is that HðrÞ � 1=τðrÞ with τðrÞ
the inverse of the function ℓðtÞ: i.e., in the exponential, marginal,
and power-law cases, respectively, that HðrÞ � logðrÞ−1=η, HðrÞ �
expð− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4d log 2 log r
p Þ, and HðrÞ � 1=rμ−d.

If there are insufficient numbers of connections for the het-
erogeneity of the network to be effectively averaged over, the
behavior changes. The extreme situation is when there is a dis-
tance-independent rate for jumps along the longest connection
out of a site: i.e., HðrÞ→ const. In this case, jumps along the path
with the shortest number of steps, S, to get from the origin to
a point R will reach that point in a time proportional to S; i.e.,
τðRÞ∼ SðRÞ. The geometrical problem of obtaining the statistics
of SðRÞ has been analyzed by Biskup (24, 46). For μ> d, S∼R
and long jumps do not matter, whereas for μ< d, S∼ ðlogRÞ1=η
with the same exponent η as in the homogeneous case we have
analyzed. The difference between this result and ours is only in
the power-law-of-T prefactor of ℓðTÞ arising from the integral
over time: This does not exist in the extreme network limit. In
the marginal case, μ= d, T ∼ SRα with α dependent on the co-
efficient of the power-law decay of the connection probability.
If the probability of a jump along a long-distance connection

decays with distance but more slowly than 1=τðrÞ, the behavior is
similar: For μ< d again the ubiquitous stretched exponential
behavior occurs, whereas for μ> d there are too few connections
only if CðrÞ< 1=r2d in which case the number of steps and the
time are both proportional to the distance. The marginal cases
we have not analyzed further.

Fig. 5. Data for different μ=d + δ are predicted to collapse on a scaling plot
close to the marginal case μ=d between the stretched-exponential and
power-law growth regimes, here demonstrated for the one-dimensional
case ðd = 1Þ. The main plot shows the rescaled sizes δ2 log2ðℓÞ=2 of the
mutant population vs. rescaled log-time ζ≡ δ log2ðtÞ=2. The differently
colored datasets correspond to 10 realizations with power-law exponents μ
chosen from f0:6, 0:7, 0:8, 0:9, 1:1, 1:2, 1:3, 1:4g (same colors as in Fig. 3,
Upper). The simulated data collapse reasonably well with the dashed red
line, representing the predicted scaling function χðζÞ= expð−ζÞ+ ζ− 1. Inset
depicts the same data scaled slightly differently away from the scaling re-
gime such that the horizontal axis for δ< 0 shows η logðtÞ (with η defined in [5]),
upon which the data collapse improves. Note that η logðtÞ≈−ζ as δ→ 0 so that
the stretched exponential form is recovered for ζ large and negative.
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For natural transport processes, the probabilities of long dis-
persal events will depend on both the source and the destination.
If the heterogeneities are weak on large length scales, our results
still obtain. However, if there are sufficiently strong large-scale
heterogeneities, either in a spatial continuum or in the network
structure (i.e., location of nodes and links and the jump rates along
these or hub-spoke structure with multiple links from a small
subset of sites), then the spatial spread will be heterogeneous even
on large scales: How this reflects the underlying heterogeneities of
the dispersal has to be analyzed on a case-by-case basis.

Discussion
Modeling Evolutionary Spread. We have studied the impact of
long-range jumps on evolutionary spreading, using the example
of mutants that carry a favorable genetic variant. To this end, we
analyzed a simple model in which long-range jumps lead to the
continual seeding of new clusters of mutants, which themselves
grow and send out more migrant mutants. The ultimate
merging of these satellite clusters limits the overall growth of the
mutant population, and it is a balance of seeding and merging of
subclusters that controls the spreading behavior.
To classify the phenomena emerging from this model, we fo-

cused on jump distributions that exhibit a power-law tail. We

found that, with power-law jumps, four generic behaviors are
possible on sufficiently long times: The effective radius of the
mutant population grows at constant speed, as a superlinear power
law of time, as a stretched exponential, or simply exponentially
depending on the exponent, d+ μ, of the power-law decay of the
jump probability. These predictions are in contrast to determin-
istic approximations that predict exponential growth for power-law
decaying jump kernels (27, 28, 30, 31). In dimensions more than
one, the results also contradict the naive expectation from dynamics
of neutral dispersal, that a finite diffusion coefficient is sufficient for
conventional behavior (in this context, finite speed of spreading):
Specifically, the variance in dispersal distances is finite for
d+ 1> μ> 2, but the spread is superlinear—indeed stretched
exponential for d> μ> 2. That superlinear dynamics can occur
for μ< 2 is not surprising as even a migrating individual under-
goes a Levy flight: More surprising is that this occurs even when
the dynamics of individuals are, on large scales, like a normal
random walk.
The breakdowns of both deterministic and diffusive expect-

ations are indicative of the importance of fluctuations: The dy-
namics are dominated by very rare—but not too rare—jumps:
roughly, the most unlikely that occur at all up to that time. One
of the consequences of this control by the rare jumps is the
relatively minor role played by the linear growth speed v of in-
dividual clusters due to short-range migration: In the regime of
power-law growth, the asymptotic growth of the mutant pop-
ulation becomes (to leading order) independent of v although
when individual clusters grow more slowly, the asymptotic regime
is reached at a later time. In the stretched exponential regime, the
growth of subclusters sets the crossover time from linear to
stretched exponential and thus determines the prefactor in the
power law that characterizes the logarithm of the mutant popu-
lation size (Crossovers and Beyond Asymptopia).
An important feature of the spreading dynamics is that the

approach to the asymptotic behavior is very slow in the vicinity of
the marginal cases, as illustrated in Fig. 6. Consider, for instance,
the 2D case, where we have asymptotically stretched exponential
growth for μ< 2: For μ= 1:8 ðμ= 1:6Þ, the epidemic has to run for
times t � 106 ð103Þ to reach the asymptotic regime. By that time,
the mutant population with ℓ � 1030 ð107Þ would have certainly
spread over the surface of the earth, so that the asymptotic laws
alone are in fact of limited value.

Fig. 6. Close to the marginal case, μ=d, the spreading dynamics exhibit three
behaviors. On asymptotically large times, either stretched exponential growth
for −d < δ≡ μ−d < 0 or superlinear power-law growth for 0< δ< 1 occurs.
However, the approach to the asymptotic regime is extremely slow for μ close
to d. For log-times log2ðtÞ � 2d=jδj, the behavior is controlled by the dynamics
of the marginal case. Note that crossover behavior also obtains near the
borderline between linear and superlinear behavior at μ=d + 1; compare SI
Text, section SI2.D and Fig. S4.

Fig. 7. (A–C) Coalescent trees, or infection trees in epidemiology, generated by power-law dispersal. A, B, and C each represent one simulation run with
parameter μ= 3:5, μ= 2:5, and μ= 1:5, respectively. For each run, 100 lattice sites indicated as red points equidistant from the start point at the origin were
sampled. For each labeled site the path that led to its colonization is plotted. The resulting coalescence trees are characteristic of the three different regimes
and reveal the long-range jumps that drove the colonization process. The background represents the colonization process in time with the color of each site
indicating its colonization time (light, early; dark, late).
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However, based on a simple geometrical argument illustrated
in Fig. 4, we could show that the full crossover dynamics can be
understood from a trade-off between frequency and potential
effectiveness of long-distance jumps: Jumps of a given size are
more abundant at late times (source funnel is large) but they are
most effective at early times (blue funnel is large). As a result,
the key jumps that dominate the filled regions at time T pre-
dictably occur near half that time. This led to a simple recurrence
relation for the spread at time T in terms of its behavior at time
T=2 (Eq. 7). Its exact solution predicts a universal crossover
function for the transient dynamics near μ= d that could be
reproduced by simulations for different power-law exponents
collapsed onto one scaling plot; compare Fig. 5. The good agree-
ment of the predicted scaling function and simulation results
provides strong support for the iterative scaling approximation.
The rigorous bounds whose proofs are outlined in SI Text, section
SI3 provide further support. Understanding this crossover is es-
sential for making sense of, and extrapolating from, simulations as
asymptotic behavior is not visible until enormous system sizes even
when the exponent μ is more than 0.2 from its marginal value.
Another benefit of the ability of the simple iterative scaling

argument to capture well nonasymptotic behavior is that it can
be used in cases in which the dispersal spectrum of jumps is not a
simple power law, e.g., with a crossover from one form to another
as a function of distance. And the heuristic picture that it gives rise
to—an exponential hierarchy of timescales separated by roughly
factors of 2—is suggestive even in more complicated situations.
That such a structure should emerge without a hierarchal structure
of the underlying space or dynamics is perhaps surprising.

Potential Applications and Dynamics of Epidemics. Our primary bio-
logical aim is the qualitative and semiquantitative understanding
that emerges from consideration of the simple models and anal-
yses of these, especially demonstrating how rapid spatial spread of
beneficial mutations or other biological novelties can be even with
very limited long-range dispersal. As the models do not depend on
any detailed information about the biology or dispersal mecha-
nisms, they can be considered as a basic null model for spreading
dynamics in physical, rather than more abstract network, space.
The empirical literature suggests that fat-tailed spectra of

spatial dispersal are common in the biological world (8, 13, 36–
41). Because most of these are surely neither a constant power
law over a wide range of scales nor spatially homogeneous, our
detailed results are not directly applicable. However, as discussed
above, our iterative scaling argument is more general and can be
applied with more complicated distance dependence, anisotropy,
or even directional migration (47). Furthermore, some of the
heterogeneities of the dispersal will be averaged out for the overall
spread, while affecting when mutants are likely to arrive at
particular locations.
For dispersal via hitchhiking on human transport, either of

pathogens or of commensals such as fruit flies with food, the
apparent heterogeneities are large because of the nature of
transportation networks. Nevertheless, data from tracking dollar
bills and mobile phones indicate that dispersal of humans can be
reasonably approximated by a power law with μ≈ 0:7± 0:15 (3,
4), cut off by an exponential tail for jump distances larger than
400 km (4) (as obtained from dataset D1 in ref. 4, tracking 105
mobile phone users). The exponent of the power-law part falls
into the asymptotic regime of stretched-exponential growth with
exponent η≈ 0:57± 0:1. However, due to the exponential cutoff
and the slow crossovers, the asymptotics are of little predictive
value. Given the inferred kernel, we would then expect the growth
dynamics to follow Eq. 8 until the key jumps fall into the expo-
nential tail of the truncated power-law kernel, upon which linear
growth (at a speed set by the exponential tail) would ensue.
Whether transport via a network with hubs at many scales

fundamentally changes the dynamics of an expanding population

of hitchhikers from that with more homogeneous jump processes
depends on the nature of how the population expands. For spread
of a human epidemic, there are several possible scenarios. If the
human population is reasonably uniform spatially, and the chance
that a person travels from, say, his or her home to another per-
son’s home is primarily a function of the distance between these
rather than the specific locations, then whether the properties of
the transportation network matter depends on features of the
disease. If individuals are infectious for the whole time the
outbreak lasts and if transmission is primarily at end points of
journeys rather than en route—for example, HIV—then the
transportation network plays no role except to provide the spa-
tial jumps. At the other extreme is whether individuals living
near hubs are more likely to travel (or even whether destinations
near hubs are more likely) and, more so, whether infections are
likely to occur en route, in which case the structure of the
transportation network—as well as of spectra of city sizes, etc.—
matters a great deal. In between these limits the network (or lack
of it in places) may matter for initial local spread but at longer
times the network structure may effectively average out and the
dynamics be more like those of the homogeneous models. The
two opposite limits and behavior in between these, together with
the specific network model we analyzed with jumping probabilities
depending on distance even in the presence of a connection—as is
true from airports—all illustrate an important point: Geometrical
properties of networks alone rarely determine their properties;
quantitative aspects, such as probabilities of moving along links
and what exists at the nodes, are crucial.
More complicated epidemic models can be discussed within

the same framework: The model discussed thus far corresponds
to an SI model, the most basic epidemic model, which consists of
susceptible and infected individuals only. Many important epi-
demics are characterized by rather short infectious periods, so
that one has to take into account the transition from infected to
recovered: SIR models of the interaction between susceptible (S),
infected (I) and recovered (R) individuals. This changes funda-
mentally the geometry of the space–time analysis in Fig. 4.
Whereas the target funnel remains a full funnel, the source
funnel becomes hollow: The center of the population consists
mostly of fully recovered individuals, whose long-range jumps are
irrelevant. The relevant source population of infected individuals is
primarily near the boundaries of the funnel. This leads to a break
in the time symmetry of the argument. As a result, the spreading
crosses over from the behavior described above to genuine SIR
behavior. The SIR dynamics are closely related to the scaling of
graph distance in networks with power-law distributions of link
lengths (24, 46), as recently shown by 1D and 2D simulations (48,
49). In particular, the limited time of infectiousness causes wave-
like spreading at a constant speed for μ> d. However, impor-
tantly, the spreading velocity is controlled by the SI dynamics
we have studied until a time of order of the infectious period.
Analogous crossovers from SI to SIR occur also with longer-
range jumps. More generally, other complications can be dis-
cussed in our framework, and we expect new behaviors,
depending on how they modify the geometry of the source to
target-funnel picture.
We expect our approach to be useful also for investigating

genetic consequences of range expansions and genetic hitch-
hiking on spatial selective sweeps with long-distance dispersal
(50–53). A generalization of the analysis of the phenomenon of
“allele surfing,” which has been mainly analyzed assuming short-
range migration so far (54–56), could be used to clarify the con-
ditions under which long-distance dispersal increases or decreases
genetic diversity—both effects have been seen in simulations (57–
59). New effects arise due to the “patchiness” (60) generated by
the proliferation of satellite clusters that are seeded by long-range
jumps, as, e.g., observed in many plant species (61). A needed
further step is the analysis of the interaction between multiple
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spreading processes, for instance generated by the occurrence
of multiple beneficial variants in a population, which leads to
soft sweeps or clonal interference in space (62, 63). Whereas
colliding clones strongly hinder each other’s spread with only
short-range migration, rare long-distance jumps may overcome
these constraints (62), leading to irregular global spreading as
we have found for a single clone.
Finally, our analyses naturally provide information on the typ-

ical structure of coalescent trees backward in time. For a given
site, the path of jumps by which the site was colonized can be
plotted as in Fig. 7. Doing this for many sites yields coalescent
trees, which can reveal the key long-range jumps shared by many
lineages. In general, such genealogical information is helpful for
reconstructing the demographic history of a species. In the partic-

ular context of epidemics, combining spatiotemporal sampling of
rapidly evolving pathogens with whole-genome sequencing is
now making it possible to construct corresponding “infection”
trees, and their analysis is used to identify major infection routes
(64). For such inference purposes, it would be interesting to
investigate the statistical properties of coalescence trees gener-
ated by simple models such as ours and how they depend on the
dispersal properties, network structure, and other features of
epidemic models.
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SI1. Simulation Details
A. Simulation Algorithm. For one-dimensional simulations, the
state of the population is described by a linear array ofN sites with
periodic boundary conditions. N is chosen large enough so that
end effects can be ignored (typically between 107 and 108 sites).
Each site has the identity of either mutant or wild type. Initially,
the whole population is wild type except for the central site,
which is occupied by mutants.
In each computational time step, a source site A and target site

B are chosen randomly such that their distance r is sampled from
a probability density function with a tail μr−ð1+μÞ at large r (see
below). If A is mutant and B a wild type, then B turns into mutants
and seeds a new mutant cluster. We use the convention that N
time steps—i.e., an average of one jump attempt per site—com-
prise 1 unit of time or effective “generation.” The rate of long-
range jumps should be thought of as representing the product
of the probability to establish a new cluster per jump and the
jump rate per generation per site.

B. Jump Size Distribution. In our simulations, the distance X of a
long-range jump was generated as follows. First, draw a random
number Y within ð0; 1Þ and calculate the variable

X = ½Y ðL−μ −C−μÞ+C−μ�−1=μ; [S1]

where C is a cutoff (see below) and L is the system size. This
generates a continuous probability density function

PrðX = xÞ= x−ðμ+1Þ
μðCLÞμ
Lμ −Cμ

[S2]

with x values in ðC;LÞ. The actual jump distance is obtained from
X by rounding down to the next integer. [Note that, because the
distribution has a tail μr−ð1+μÞ, we have to choose e= μ in Eq. 2 of
the main text.]
For the one-dimensional data in all graphs of this paper, we

used C= 1 and system sizes ranging from L= 109 for μ= 0:6 to
L= 108 for μ= 1:4. For such large systems, the tail of the dis-
tribution is well approximated by pðxÞ∼ μx−ðμ+1Þ, as stated in the
main text. We also tested variations in the cutoff C. Using C= 10
or C= 100 affected only the short-time dynamics and had very
little influence on the intermediate asymptotic or long-distance
behavior of the system.
For our 2D simulations, we draw jump sizes from the same

distribution as the one described above and round down to the
next possible site. We set the lower cutoff to C= 1:5>

ffiffiffi
2

p
to make

sure that jumps reach out of the source lattice point. After the jump
size is drawn, the jump direction is chosen at random.

SI2. Iterative Scaling Approximation: Details and Extensions
In the main text, Crossovers and Beyond Asymptopia, we used
a saddle-point approximation (Laplace method) to obtain a re-
currence relation, Eq. 7, for the core radius of the mutant
population as a function of time. For this purpose, we assumed
that length and time were measured in units of elementary
crossover scales at which the growth law changes from linear to
superlinear in time.
Here, we first discuss how the crossover scales can be deter-

mined, solve the recurrence relation explicitly, and work out cor-
rections to the saddle-point approximation. Finally, we present an

improved version of our geometrical argument of the source and
target funnels (Fig. 4), which also allows us to estimate the
probability of occupancy outside the core region.

A. Crossover Scales. The crossover scales ℓ× and t× from linear to
superlinear growth can be obtained explicitly when we assume that
the total rate of long jumps is small compared with that of the
short-range jumps: i.e., when «, the coefficient of GðrÞ≈ e=rd+μ, is
small. Short jumps result in diffusive motion and linear growth
ℓðtÞ≈ v0t with v0 determined by the details of the selective and
diffusive dynamics. Long jumps start to become important after
enough time has elapsed that there have been at least some
jumps of lengths of order ℓðtÞ: i.e., when etℓðtÞd=ℓðtÞμ � 1; this
occurs after a crossover time t× ∼ ½vμ−d0 = e�1=ðd+1−μÞ at which
point ℓ∼ ℓ× ∼ ½v0=e�1=ðd+1−μÞ. At longer times and distances, we
can measure lengths and times in units of these crossover scales,
defining λ≡ ℓ=ℓ× and time θ= t=t× , and expect that the behavior
in these units will not depend on the underlying parameters. Note
that this separation in short-time linear growth and long-time
regimes can also be done for more general GðrÞ although then
the behavior will depend on the whole function—the crossover on
distances of order ℓ× and the superlinear behavior on the longer
distance form.

B. Solving the Recurrence Relation for the Core Radius.The recurrence
relation Eq. 7 for the rescaled core radius λðtÞ≡ ℓðtÞ=ℓ× of the
mutant population in terms of the rescaled time θ≡ t=t× ,

λ2d+δðθÞ∼ θλðθ=2Þ2d; [S3]

is valid in the vicinity of the phase boundary δ≡ μ− d= 0. We now
show how the solution, quoted in [8], and the associated prefac-
tors of the asymptotic growth laws can be obtained.
Defining φ≡ log2ðλÞ and z≡ log2ðθÞ and taking the binary log-

arithm, log2, of Eq. S3, we obtain the linear recurrence relation

ð2d+ δÞφðzÞ≈ 2d  φðz− 1Þ+ z: [S4]

Note that in our conventions we use ∼ (as in Eq. S3) for asymp-
totically goes as, with unknown coefficient [i.e., loosely similar to
Oð. . .Þ notation], and ≈ (as in Eq. S4) if we know the coefficient;
i.e., the ratio goes to unity.
Now, it is straightforward to see that

QðzÞ≡ z
δ
−
2d
δ2

[S5]

is a special solution of [S4]. Substituting φðzÞ= ~φðzÞ+QðzÞ, we
are left with the homogeneous problem

ð2d+ δÞ~φðzÞ≈ 2d  ~φðz− 1Þ; [S6]

which is easily solved by

~φðzÞ≈
�
1+

δ

2d

�−z
~φð0Þ: [S7]

Reinserting φðzÞ and imposing the initial condition φð0Þ= 0 fi-
nally yields Eq. 8 of the main text,
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δ2

2d
φðzÞ≈ δz

2d
+
�
1+

δ

2d

�−z
− 1: [S8]

In the limit z→∞, the second and first terms dominate for δ> 0
and δ< 0, respectively. The resulting asymptotics

log½λðtÞ�≈

8>>><
>>>:

Bμtη; η= log
2d=ðd+ μÞ

log 2
; δ> 0

log
�
Aμtβ

�
; β=

1
μ− d

; δ< 0

[S9]

reveal the prefactors Bμ = 2d logð2Þδ−2 and logAμ =−2d logð2Þδ−2
quoted in the main text. Note that we use the variable β through-
out the SI Text as a shorthand for the power-law exponent
β= 1=ðμ− dÞ.
C. Subdominant Corrections from Time Integrals. In analyzing the
iterative scaling approximation in the main text, we have effec-
tively replaced the integrand in the time integral of Eq. 4 by its
value at the half-time peak that dominates the probabilities of
occupation at time T. (This procedure resulted in the simple
recursion relation [8], which we have explicitly solved in the pre-
vious section SI2.B.) In doing so, we have ignored effects associated
with the parameter-dependent width of the peak around T=2 that
contributes substantially to the integral. This is valid for obtaining
the leading behaviors of log ℓðtÞ in the large time limit, but there
are corrections to these that can be larger than those that arise
from the short-time small-length-scale crossovers that we dis-
cussed in the main text and we discuss them further below. For
μ not much smaller than d+ 1, when the growth of ℓ is a modest
power of time, the factor from the range of the time integral is
only of order unity and hence no worse than other factors—in-
cluding from the stochasticity—that we have neglected. How-
ever, when ℓðtÞ grows very rapidly, the range of ð1=2ÞT − t that
dominates is much smaller than T and the corrections are larger.
With rapid growth of ℓðtÞ, a saddle-point approximation to the

time integral is valid:
R t
0 dtℓðtÞℓðT − tÞ≈TcT=2ℓ2ðT=2Þ with the pre-

factor given by

ct ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

−2t2∂2t log ℓðtÞ

s
; [S10]

from which, with the second derivative absorbing the t2 factor, the
derivative part can be rewritten as t2∂2t log ℓðtÞ=−∂log t log ℓ+
∂2log t log ℓ. With the asymptotic growth laws we have derived, this
gives c∼

ffiffiffiffiffiffiffiffiffiffi
μ− d

p
for μ− d small and positive, ct ∼ 1=

ffiffiffiffiffiffiffiffiffi
log t

p
for

μ= d, and ct ∼ t−η=2 for μ< d. Integrating up the effects of this
over the scales yields the following corrections in the various
regimes: For μ> d, the coefficient, Aμ, of tβ is changed by a mul-
tiplicative factor that is much less singular for μ↘d than that
already obtained. For μ= d,

log½ℓðtÞ�≈C
�
log2 t− log t log logt+Oðlog tÞ

�
[S11]

with C= 1=4d  log  2, the second term being new and the smaller
correction term including the effects of the small time crossover.
For 0< μ< d,

log½ℓðtÞ�≈Bμtη −
1− η=2
d− μ

log t [S12]

with the second term for μ↗d just what occurs in the crossover
regime analyzed in Crossovers and Beyond Asymptopia (main text),

where we showed that the coefficient Bμ diverges proportional
to 1=ðd− μÞ2.
D. Prefactors in Power-Law Regime. In the main text, we mainly
focused on regimes in which themutant growth is very much faster
than linear; i.e., μK d+ 1=2. This allowed us to approximate the
integrals in the iterative scaling approximation of Eq. 1 (main
text) by the use of Laplace’s method. This saddle-point approxi-
mation yields the correct scaling for all exponents μ< d, but (as we
see below) incorrect prefactors in regimes where the actual growth
is close to linear, i.e., in the power-law growth regime with
d+ 1> μJ d.
To obtain a better estimate of the prefactors in this power-law

regime, it is helpful to directly solve for the asymptotics of the
iterative scaling argument in Eq. 1 (main text). Here, we dem-
onstrate how this can be done for d= 1: Assume that most of the
weight in the integral comes from regions where the jump kernel
is well approximated by its power-law tail described in Eq. 2
(main text). Given μ< 2 (for d= 1), this always holds at sufficiently
long times. Then, we have

e

Z t

0

dt′H
�
t′
�
∼1; [S13]

where

μðμ− 1ÞH�
t′
�
≡
�
ℓðtÞ− ℓ

�
t′
�
− ℓ

�
t− t′

��1−μ
 −

�
ℓðtÞ− ℓ

�
t′
�
+ ℓ

�
t− t′

��1−μ
 +

�
ℓðtÞ+ ℓ

�
t′
�
+ ℓ

�
t− t′

��1−μ
 −

�
ℓðtÞ+ ℓ

�
t′
�
− ℓ

�
t− t′

��1−μ
:

[S14]

For 1< μ< 2, Eq. S13 exhibits an asymptotic power-law solution

ℓðtÞ=AμðetÞ1=ðμ−1Þ: [S15]

By inserting this ansatz into Eqs. S13 and S14, we obtain the
following result for the numerical prefactor,

Aμ−1
μ ≈

Z1

0

dz~RðzÞ; [S16]

with ~RðzÞ being equal to H(t) in Eq. S14 with ℓðtÞ replaced by
z1=ðμ−1Þ.
The resulting prefactor is plotted as a function of μ− 1 in

Fig. S3. Note that Aμ strongly depends on the exponent μ. It
sharply drops for μ approaching 1, where it follows the asymp-
totics 2−2ðμ−1Þ

−2
. On the other hand, as μ approaches the other

marginal case at μ= 2, the prefactor diverges as Aμ ∼ ð2− μÞ−1,
indicating the importance of intermediate asymptotic regimes, as
discussed in Crossovers and Beyond Asymptopia (main text).
Although we have focused on the marginal case near μ= d in

this article, it is clear that another case of marginality controls the
crossovers near μ= d+ 1. Simulation results reported in Fig. S4
indicate that ℓðtÞ=t∼ logðtÞ for μ= 2 in one dimension. This is
consistent with our funnel argument: With nearly constant speed,
the gap between the funnels remains roughly constant for a time of
order t. To ensure that the source emits about one jump to the
target funnel, we must have that, per unit of time, the probability
of a seed jumping over the gap is of order 1=t. Thus, the gap size
ΔE should be such that ΔE−μ+1 ∼ 1=t. For μ= 2, we thus have
ΔE∼ t; i.e., the key jumps span distances of order t. This is en-
sured when ðℓðtÞ− 2ℓðt=2ÞÞ=t∼ const:, i.e., if ℓðtÞ=t∼ log t. Note that
a rigorous upper bound of this form follows from the arguments
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presented in SI Text, section SI3.A.4 for the regime μ> d. The
jumps of order OðtÞ that drive the logarithmic increase in spreading
velocity might be the “leaps forward” (1) recognized by Mollison in
one of the earliest studies on spreading with long-range jumps.

E. Occupancy Profiles and Relevance of Secondary Seeds. In the main
text, we introduced the notion of a nearly occupied core of the
population [of size ℓðtÞ] as the source of most of the relevant
seeds in the target funnel. However, it is clear that outside of this
core there is a region of partial occupancy. This region is po-
tentially broad, in particular for μ→ 0, and may therefore lead to
a significant fraction of relevant seeds. An improved theory
should account for those secondary seeds and should also be able
to determine the profile of mean occupancy or, equivalently, the
probability that a site is occupied. Whereas we give rigorous
bounds on how the total population grows in SI Text, section SI3,
we first use an improved version of our funnel argument to de-
scribe the occupancy profiles.
We focus on the probability, qðr; tÞ, that at time t after a mutant

establishes, it will have taken over the population a distance r
away. We expect that qðr; tÞ will be close to unity out to some
core radius ℓðtÞ and then decrease for larger r, with the average
total mutant population proportional to ℓðtÞd. With only short-
range dispersal, ℓðtÞ≈ vt and the core is clearly delineated but
when long jumps are important, the crossover from mostly occu-
pied core to sparsely occupied halo will not be sharp. The more
important quantity is the average of the total area (in two dimen-
sions or linear extent or volume in one or three dimensions) oc-
cupied by the mutant population; we denote thisMðtÞ= R

ddrqðr; tÞ.
To find out when long jumps could be important, we first ask

whether there are likely to be any jumps longer than ℓðtÞ that
occur up to time t. The average number of such long jumps is of
order tℓðtÞd R∞

ℓðtÞ r
d−1drGðrÞ. If GðrÞ decreases more rapidly than

1=r2d+1, this is much less than t=ℓðtÞ for large t. As ℓðtÞ increases at
least linearly in time, the probability that there have been any
jumps longer than ℓðtÞ is very small. The guess that ℓ indeed
grows as vt, and consideration of jumps that could advance the
front fast enough to contribute substantially to v, leads, sim-
ilarly, to the conclusion that there is a maximum t-in-
dependent jump length beyond which the effects of jumps are
negligible; indeed, their effect decreases more rapidly than
GðrÞ. This reinforces the conclusion that there is only linear
growth with μ> d+ 1: a very strong breakdown of the de-
terministic approximation that yielded exponential growth for any
power law.
When G is longer range, in particular if GðrÞ∼ 1=rd+μ with

μ< d+ 1, many jumps longer than ℓðtÞ will have occurred by
time t. We now study the effects of such long jumps on the
density profile. To do so, we investigate the behavior of
qðR;TÞ for large R and T in terms of the fqðr; tÞg at shorter
times and—primarily—corresponding distances r∼ ℓðtÞ that
can be much less than R. Mutants can get to a chosen point,
R, by one making a long jump at time t from a starting point x
to an end point, y, and subsequently spreading from there
to R during the remaining time interval of duration T − t.
The rate (per volume elements) of this occurring is
qðx; tÞGðjx− yjÞqðjR− yj;T − tÞ. In the approximation that these
are independent, the probability that this does not occur at
any t<T from any x to any y is simply Poisson so that

qðR;TÞ≈ 1− e−QðR;TÞ [S17]

with

QðR;TÞ≈
ZT

0

dt
Z

z>ℓðT=2Þ

ddz
Z

ddx  qðx; tÞGðzÞqðjR− x− zj;T − tÞ:

[S18]

Here, we substituted the final point y= x+ z by the sum of the jump
start site and a jump vector z, over which we integrate. Note that
a lower cutoff in the z integral is necessary to exclude the many very
short jumps that lead to strongly correlated establishments. The
cutoff is also necessary to not count mutants that result from growth
in the target area, rather than seeding from the source funnel. Our
main assumption here is that if a single seed is sufficiently far from
other seeds or occupied regions, then the growth from the seed is
independent of the rest of the system as long as collisions are unlikely.
When the jump integral is strongly peaked at z=R, as is the

case in or close to the stretched exponential regime, the final
results will be independent of this cutoff to leading order. Then,
we can approximate QðR; tÞ as

QðR; tÞ≈GðRÞ
Z t

0

dt′M
�
t′
�
M
�
t− t′

�
; [S19]

where MðtÞ is the expected total size of a population at a time t,

MðtÞ=
Z

ddxqðx; tÞ: [S20]

For a power-law kernelGðRÞ=Gð1ÞR−ð1+μÞ, we make the ansatz
that Eqs. S19, S20, and S17 can be approximately solved by
a scaling form

qðR; tÞ=Ξ
�

R
λðtÞ

�
[S21]

with

ΞðξÞ= 1− exp
	
−ξ−ðd+μÞ



; [S22]

which leads to the condition

QðξλðtÞ; tÞ= ξ−ðd+μÞκ2Gð1Þλ−ðd+μÞ
Z t

0

dt′λd
�
t′
�
λd
�
t− t′

�
; [S23]

where MðtÞ= κλðtÞd and κμ is given by

κ=
Z

dξdΞðξÞ: [S24]

Thus, the above scaling form is a valid solution if the characteristic
scale λðtÞ satisfies

κ2Gð1Þλ−ð1+μÞ
Z t

0

dt′λ
�
t′
�
λ
�
t− t′

�
= 1: [S25]

The resulting condition is similar to our condition in the main text
but differs by the numerical factor Gð1Þκ2μ. In one dimension,

κμ = 2Γ
�

μ

1+ μ

�
: [S26]

The divergence κ2μ ∼ μ−2 as μ→ 0 indicates the importance of
seeds from the tail regions for small μ.
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Note that at long distances, R � ℓðTÞ, the lengths of the jumps
that dominate are close to R so that our approximation for QðR;TÞ
should be correct even if it is a poor approximation for R≈ ℓðTÞ.
Thus, the decrease in q at large distances is simply proportional to
GðRÞ; more specifically,

qðR;TÞ≈ GðRÞ
GðℓðTÞÞ [S27]

(as predicted by the scaling form) so that it is of order unity at
R≈ ℓðTÞ. Note that this implies that, because GðrÞ is integrable,R
ddrqðr; tÞ is indeed dominated by r∼ ℓðtÞ as we have assumed.

This long-distance form for the density profile is also found in
the analyses of upper and lower bounds in the next sections:
Thus it can be readily proved along the same lines.

SI3. Rigorous Bounds and Outlines of Routes to Proofs
As most of our results are based on approximate analyses and
heuristic arguments, it is useful to supplement these by some rigorous
results. We focus on the one-dimensional case: Extensions to higher
dimensions can be done similarly, although with a few complications
that will require some care. We sketch here the arguments that can
lead to proofs without all of the details filled in.
As via the heuristic arguments, we want to obtain the behavior

at longer times in terms of the behavior at shorter times, in par-
ticular times around half as long.
We want to prove that there exist time-dependent length scales,

ℓ<ðtÞ and ℓ>ðtÞ, and functions, F<ðr; tÞ and F>ðr; tÞ, such that the
probability, qðr; tÞ, that a site at r from the origin is occupied at
time t, is bounded above and below by

F<ðr; tÞ< qðr; tÞ<F>ðr; tÞ with M< ≡
Z

drF<ðr; tÞ ∝ ℓ<ðtÞ

and M> ≡
Z

drF>ðr; tÞ ∝ ℓ>ðtÞ
[S28]

for all times. Then ℓ< and ℓ> are lower and upper bounds for
ℓðtÞ—with some appropriately chosen definitions of ℓðtÞ that
differ somewhat, although not significantly, for the upper
and lower bounds. Although we want the upper and lower
bounds on ℓðtÞ to be as close as possible to each other, in
practice, we have obtained bounds that are good on a logarithmic
scale: i.e., for log ℓðtÞ, rather than on a linear scale. Similarly, we
want to have the bounds be close to the actual expected form of
q, with F< very close to unity for r � ℓ< and proportional to
½ℓ<=r�μ+1 for r � ℓ< and similar for the upper bounds.
It is often more convenient to consider the typical time to oc-

cupation as a function of the distance, τðrÞ, and derive upper and
lower bounds for this, τ>ðrÞ and τ<ðrÞ, respectively, such that

ℓ<ðt= τ>ðrÞÞ= r and ℓ>ðt= τ<ðrÞÞ= r [S29]

with

τ>ðrÞ> τðrÞ> τ<ðrÞ: [S30]

Because of the faster than linear growth, bounds on τðrÞ are
generally much closer than those on ℓðtÞ.
As we want to justify the use of the heuristic iterative scaling

arguments more generally, it is especially useful to obtain iterative
bounds directly of the form used in those heuristic arguments:
ℓðTÞ in terms of fℓðtÞg for t in a range near T=2. As the heuristic
arguments do, in any case, give ℓðTÞ only up to a multiplicative
coefficient of order unity, we will generally ignore such order-unity
coefficients in length scales except for coefficients that diverge or
vanish exponentially rapidly as μ→ d, in particular in the interme-

diate-range regime the coefficient, Aμ in ℓðtÞ∼Aμt1=ðμ−dÞ, which
vanishes as logðAμÞ≈−log 4=ðμ− dÞ2 as μ↘d.

A. Upper Bounds.
1. Simple power-law bound.The simplest bound to obtain is an upper
bound for ℓðtÞ in the short- and intermediate-range regimes: i.e.,
in one dimension, μ> 1. Define EðtÞ to be the rightmost edge of
the occupied region at time t; i.e., cðx; tÞ= 0 for x>EðtÞ. The
probability of a jump that fills a position y>EðtÞ in ðt; t+ dtÞ is
less than

R EðtÞ
−∞ dxGðy− xÞ∼ 1=ðy−EðtÞÞμ. For μ> 1, the lower extent

of the integral can be taken to −∞ as the jumps arise, predomi-
nantly, from points that are not too far from the edge. [In contrast,
for μ< 1 jumps from the whole occupied region are important and
this bound would yield a total jump probability to long distances
that diverged when integrated over y, and we would have to instead
use a lower extent of the integral of −EðtÞ for the left edge.]
The advancement of the edge is bounded by a translationally

and temporally invariant process of jumps of the position of the
edge by distances, ΔE, whose distribution has a power-law tail.
For μ> 2, the mean hΔEi<∞, implying that the edge, and hence
ℓðtÞ, cannot advance faster than linearly in time. However, for the
intermediate regime, hΔEi>∞ so that EðtÞ could advance as fast
as a one-sided Levy flight with EðtÞ dominated by the largest
advance. As this process would yield E∼ t1=ðμ−1Þ, this implies that
ℓðtÞ is bounded above by the same form as the heuristic result.
Although the simple bound captures some relevant features, in

particular the dominance of jumps of length of order r to fill up a
point at distance r, it is otherwise rather unsatisfactory. First, the
coefficient does not vanish rapidly as μ↘1. And second, it suggests
that the probability that an anomalously distant point, r � ℓðtÞ, is
occupied, is, in this crude approximation of full occupancy out to
the edge, simply the probability that EðtÞ> r, which falls off only as
1=rμ−1—much more slowly than the actual qðr; tÞ∼ r−1−μ.
Nevertheless, for proving better upper bounds, the Levy-flight

approximation for the dynamics of the edge is quite useful.
2. Upper bounds from source–jump–target picture.As discussed earlier,
we want to make the heuristic argument of a single long jump
from a source region to a target funnel region include also—or
provide solid reasons to ignore—the effects of jumps from the
partially filled region outside the core of the source. Very loosely,
we want to write the probability that a point, R, is not occupied at
time T, as

1− qðR;TÞ≈ exp

"
−
ZT

0

dt
Z∞

−∞

dx
Z∞

−∞

dyqðx; tÞGðjy− xjÞqðR− y;T − tÞ

#

[S31]

with x in the source region and y in the funnel of R. However, for
any positive μ, the spatial integral is dominated by y− x small, so
that this does not properly represent the process: There is a dras-
tic overcounting of short jumps.
We can do much better by trying to separate the long jumps

from the short ones and the source region from the funnel (in the
crude approximation these overlap). To do this, we choose, for
the R and T of interest, a spatiotemporal source region, S, around
the origin that has a boundary at distance BSðtÞ that loosely re-
flects the growing source: dBS=dt≥ 0. We then separate the pro-
cess of the set of jumps that lead to R into three parts: first, jumps
solely inside S, which lead to a spatiotemporal configuration of
occupied sites, fcSðx; tÞg; second, bridging jumps from these out of
S, say at time t from x in S to a point y in the rest of space–time, S;
and third, all of the subsequent dynamics from such seeds in S,
including inside and outside S and between these. This overcounts
the possible spatiotemporal routes to R;T—especially as returns
to inside S from outside are included—and thus provides an upper
bound for qðR;TÞ. The probability, pa, that a single seed, a, to ya
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at ta leads to R being filled by T is qðR− ya;T − taÞ. However, the
probability that a second seed, b, leads to R filled by T is not in-
dependent as the fate of these seeds involves overlapping sets of
jumps: Indeed, they are positively correlated so that

P½cðR;TÞ= 0jseeds a and b�
≥P½cðR;TÞ
= 0jseed a�×P½cðR;TÞ= 0jseed b�:

[S32]

Because for a given occupancy profile fcSðr; tÞg, the probability
density of a seed at y; t is dydt

R
jxj<BSðtÞcSðx; tÞGðy− xÞ, and using

the generalization of the above bound to many seeds, we have

qðR;TÞ≤ 1− exp

"
−
ZT

0

dt
Z

jxj<BSðtÞ

dx  qSðx; tÞ

Z
jyj>BSðtÞ

dy Gðy− xÞqðR− y;T − tÞÞ

#
; [S33]

where qSðx; tÞ≡ hcSðx; tÞi and we have used hexpðXÞi≥ expðhXiÞ
for any random variable.
To derive a useful upper bound on qðR;TÞ we need to choose

appropriately the boundary, BSðtÞ, of the source region and put
a sufficiently stringent upper bound on qSðx; tÞ.
3. Long-range case.For the long-range case, μ< 1, the integrals over
x<BS and y>BS of Gðy− xÞ are dominated by long distances.
Thus, the short jumps from inside to outside S do not contribute
significantly. We can then simply replace qS by the larger q to
obtain a slightly weaker bound that is of exactly the form of the
naive estimate except for the strict delineation of the source re-
gion, which prevents the most problematic overcounting of the
effects of short jumps. A particularly simple choice is BS = ð1=2ÞR
independent of t.
We now proceed by induction. Take the bound on the scal-

ing function to have the form F>ðr; tÞ= 1 for r< ℓ>ðtÞ whereas
F>ðtÞ= ½ℓ>=r�μ+1 for r � ℓ>ðtÞ and assume that for some appro-
priate ℓ>ðtÞ, this is indeed an upper bound for all t<T; i.e.,
qðr; tÞ≤F>½r=ℓ>ðtÞ�. We can now use [S33] with qS and q both
replaced by F>.
When ℓ>ðtÞ and ℓ>ðT − tÞ are both much less than R, the in-

tegrals over x and y will be dominated by the regions near the
origin and R, respectively, yielding the spatial convolution
F> ○G ○F> ∼ ℓ>ðtÞℓ>ðT − tÞ=Rμ+1. There are small positive cor-
rections to this from two sources: first, from the regions near 0 and
R, which, by expanding y− x in x and R− y, are seen to be of order
½ℓ>ðtÞ2 + ℓ>ðT − tÞ2�ℓ>ðtÞℓ>ðT − tÞ=Rμ+3; and second, from y− x �
R, the regions near the source boundary, which are of order
½ℓ>ðtÞ=R�μ+1½ℓ>ðT − tÞ=R�μ+1R1−μ with the last part from the in-
tegrals over x and y. As the dominant part is exactly of the form in
the heuristic treatment, integrating it over time is strongly
peaked at t≈T=2 (note that for either t or T − t much smaller
than T, one of the F> factors will be close to unity near the
boundary, but these ranges of time contribute only weakly). If
we use 1− e−Q ≤minðQ; 1Þ, then ℓ>ðTÞ can be chosen as the
value of R for which Q= 1, and for R � ℓ>ðTÞ the desired
F> ∼ ½ℓ>=R�μ+1 is obtained. Including the small correction factors
in the convolutions necessitates slight modifications of the re-
cursion relations for ℓ> but these are negligible at long times.
4. Intermediate-range case. Obtaining an upper bound in the
intermediate-range case is somewhat trickier. If we again replaced
qS by q, then the integrals over x and y would have a part dominated
by both points being near the boundary: With BS ∼R, this contri-
bution to the convolution would be of order ½ℓ>ðtÞ=R�μ+1½ℓ>ðT − tÞ=

R�μ+1. With t∼T=2 and R∼ ℓðTÞ, all of the lengths should be of
order tβ with β= 1=ðμ− dÞ, so that this boundary piece is larger by a
factor of ½ℓðTÞβ�μ−1 ∼T than what should be the dominant part
from x and y near 0 and R, respectively. Thus, we need a better
upper bound on the restricted-source qSðr; tÞ, which vanishes as
r↗BSðtÞ.
To bound qS, we can make use of the simple bound for the

edge of the occupied region derived above, combined with the
restrictive effects of the boundary, BSðtÞ. Instead of choosing BS
to be constant, we choose it to have constant slope, U ≡ dBS=dt,
of order ℓðTÞ=T. As jumps that contribute to qS are not allowed
to cross the boundary, the distribution of jumps of the edge EðtÞ is
cut off at ζðtÞ≡BSðtÞ−EðtÞ. Because U > v0, the speed of spread in
the absence of jumps beyond nearest neighboring sites, typically
the gap, ζðtÞ, will increase with time, decreasing only by jumps.
The sum of all of the jumps of E in a time interval Δt is domi-
nated by the largest, which is of order ðΔtÞ1=ðμ−1Þ. This would
result in the edge moving faster than U except for the cutoff.
The typical gap, ~ζ, is then obtained by balancing its steady
decrease against the dominant jump: UΔt∼ ðΔtÞ1=ðμ−1Þ, yielding
Δt∼Uðμ−1=Þð2−μÞ and hence

~ζ∼U1=ð2−μÞ ∼
�
ℓðTÞ
T

�1=ð2−μÞ
∼ ℓðTÞAðμ−1Þ=ð2−μÞ

μ ; [S34]

using ℓðtÞ∼Aμt1=ðμ−1Þ. In the limit of μ↘1, ~ζ=ℓ∼ 4−1=ðμ−1Þ, vanish-
ing rapidly—a reflection of the strong failure of the simple edge
bound in this limit but sufficient for our present purposes. In
a time Δt � T, the distribution of ζ in this approximation will
reach a steady state. The probability that ζ � ~ζ is controlled by
the balance between jumps of E to near the boundary, and the
steady increase in ζ from the boundary motion: Its probability
density is hence of order ζ=~ζ, which, because in this approxima-
tion all sites are occupied up to E, implies that qS vanishes at
least quadratically for small gap ζ. Combining this with the trivial
bound of qS < q and choosing a convenient normalization of ~ζ,
we thus have

qSðr; tÞ≤min

"
F>ðr; tÞ; ðBSðtÞ− rÞ2

~ζ
2

#
: [S35]

It remains to choose BSðtÞ so that the bound on qS remains suf-
ficiently good for t small enough that the steady-state distribution
of ζðtÞ has not yet been reached. To keep EðtÞ typically of order ~ζ
from BSðtÞ, we can simply chose BSð0Þ= ~ζ and U = ðR− 2~ζÞ=T.
With our improved bound on qS, for the convolution qS ○G ○ q,

the small BS − x parts are no longer dominated by BS − x of order
unity, but by BS − x near the crossover point between the two
bounds on qS. This yields a contribution to the convolution of
order ℓ>ðtÞαS ℓ>ðT − tÞαF=RαS+αF+μ−1 with αF = ðμ+ 1Þð2− μÞ and
αS = αFð3− μÞ=2 and a multiplicative coefficient that does not
depend exponentially on 1=ðμ− 1Þ because the integral over x
scales as 1=~ζ

μ−1
. As μ↘1, αF → αS → 1, and the boundary con-

tribution is less than the dominant part uniformly in t. Note that
for μ> μB ≅ 1:5, the bound on the near-boundary contribution
can be somewhat larger for t<T=2 than the dominant parts, but
it scales in the same way with T and thus only weakens the upper
bound on the coefficient, Aμ, which is in any case of order unity
in this regime.
Once the overcounting of short jumps has been sufficiently

reduced, as we have now done, the rest of the analysis, in particular
the large R=ℓ> form of F>, follows as in the long-range case.
The marginal case μ= 1 can be analyzed similarly to the

intermediate-range case, resulting in an additional logarithmic
dependence on R of the near-boundary contribution, which is,
nevertheless, still much smaller than the dominant part.
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The upper bounds that we have obtained are, except for mod-
ifications at small scales and for μ not much smaller than 2, es-
sentially the same as given by the heuristic arguments, thus differing
at long scales only by order-unity coefficients that, in any case, we
did not expect to get correctly. All of the crossover behavior near
μ= 1 is in the upper bounds, although that near μ= 2 is not.

B. Lower Bounds. To obtain lower bounds on the growth of the
characteristic length scale ℓðtÞ and the occupation probability, qðr; tÞ,
a different strategy needs to be used. One of the difficulties is the
dependence on the behavior at each timescale on all of the earlier
timescales: For the filled region to grow typically between times T
and 2T, the stochastic processes that lead to the configuration
cðx;TÞ must not have been atypically slow or ineffective. As this
applies iteratively scale by scale, we must allow for some uncertainty
in whether the smaller-scale regions are typical, leading to some
uncertainty at all scales, which, nevertheless, we need to bound.
Because of the stochastic heterogeneity of cðx; tÞ, it is better to focus
on a coarse-grained version of the occupation profile rather than on
cðx; tÞ itself, as integrations over c at time t are what act as the
sources of future occupation at larger distances.
1. Mostly filled in: Marginal and long-range regimes. We consider the
probability that a region is almost full; in particular, with a seed at the
origin, we consider the region to one side of the origin and define

PFðr; t;ΦÞ≡P
"
1
r

Z r

0

dx  cðx; tÞ>Φ

#
[S36]

with Φ close to or equal to unity being of particular interest. To
keep events sufficiently independent, we consider, as for the
upper bounds, the probability of events that do not involve any
jumps out of some region. In particular, we define PSðr; t;ΦÞ
similarly to PF , but with the restriction that jumps do not go
out of the interval ð0; rÞ. For the long-range and marginal cases,
we focus on partial filling, but for the intermediate range case
the scale invariance mandates different treatment so we instead
analyze full filling—i.e., Φ= 1.
The basic strategy is to start with a particular deterministic

approximation to ℓðtÞ, ~ℓðtÞ with corresponding times ~τðrÞ, and
then show that at time not too large a multiple of ~τðrÞ, the region
out to r will be nearly filled with high probability: i.e., that
PSðr; τ>ðrÞ;ΦÞ is close to unity for τ>ðrÞ=~τðrÞ sufficiently large.
We are interested in large scales as, in any case, fluctuations at
the small scales can change coefficients only by order unity. We
can thus be sloppy with some of the bounding inequalities: These
could be improved to include the ignored corrections to the
large-scale effects to make fully rigorous bounds.
As the range of time over which the typical ℓðtÞ expands sig-

nificantly plays an important role, it is useful to define

~DðtÞ≡
�
d log~ℓðtÞ
d log t

�−1
; [S37]

which is small except for μ substantially larger than one. The
dominant jumps from source to funnel involve an integral over
time of ~ℓðtÞ~ℓðT − tÞ, which is primarily from a range of order
T

ffiffiffiffi
~D

p
around T as discussed above. The deterministic-iterative

approximation that we use as a base for the lower bounds is the
solution to the iterative relation [ambiguous up to an Oð1Þ mul-
tiplicative factor, which we ignore throughout]

�
~ℓð2TÞ�μ+1 =T

�
~ℓðTÞ�2

ffiffiffiffiffiffiffiffiffiffiffi
~DðTÞ

q
; [S38]

corresponding to roughly one seed into a funnel of width ~ℓðTÞ
from a jump of distance ~ℓð2TÞ from the source up to time T.

For convenience, we use only half the source—x from 0 to~ℓðTÞ. The
results, ~ℓðtÞ, of this iterative approximation are, up to numerical
factors that arise from these modifications and from other from
nonasymptotic effects at small scales, equivalent to the upper
bounds, ℓ>ðtÞ from the above. In particular, we expect the ratio
between the corresponding times, ~τðrÞ and τ<ðrÞ, to approach
constants that are not singular near the marginal case μ= d= 1.
For the lower bounds it is convenient to work with a specific set

of length scales,~ℓn =~ℓð~τnÞ, corresponding to a series of timescales,
~τn = 2n (dropping a prefactor). To mostly fill out to ~ℓn+1 without
jumps going out of ð0;~ℓn+1Þ from the source of size~ℓn, most of the
Kn =~ℓn+1=~ℓn bins of size ~ℓn must be mostly filled. To get a lower
bound on how long this takes and how likely it is, we make
several simplifications, each of which leads to underestimates of
the probability that the desired filling has occurred. First, con-
sider only jumps into each bin that come directly from the source
(rather than from other bins as can occur later). Second, ignore
all but the first seed jump from the source into the bin (the
effects of later jumps are not independent of those of the first). And
third, include only jumps that lead from the seed in a bin that do not
go outside that bin during the time during which the probability of it
being mostly filled is considered. The last two conditions mean that
the probability that the bin is filled to a fraction Φ by a given time, t,
after the seeding jump, is at least as large as PSð~ℓn; t;ΦÞ because
a seed at the edge of the bin, which corresponds to the definition at
the source, is less likely to mostly fill the bin than a seed away
from the edge.
At large scales for μ≤ 1, the number of bins, Kn, grows with

scale Kn ∼
ffiffiffiffiffi
~τn

p
for the marginal case and larger for the long-

range case. Thus, if the probability that the furthest bin from the
source is mostly filled is fn, with the filling of the others being
more probable as they are closer, it is likely that the number that
are similarly mostly filled is close to Knfn, with significant devi-
ations from this being very unlikely at large scales. To iterate
while not losing too much in the filling fraction, we chose a series
of partial filling fractions, fϕng, such that ΦN ≡

Q
n=1;N−1ϕn con-

verges to the desired overall filling fraction, Φ, at large N, and
chose conditions such that fn is sufficiently large that the fraction
of the Kn bins filled to Φn is greater than ϕn with high probability:
This then implies that the region from the origin to ~ℓn+1 will be
filled to greater than Φn+1 with high probability. A convenient
choice is ϕn = 1−Δ=n1+α with any positive α and Δ

P
nn

−1−α <
1−Φ. For convenience in dropping logΔ factors that otherwise
appear in many places, we restrict consideration to Δ not very
small and do not keep careful track of α factors that also appear as
we can take α→ 0 at the expense of corrections that are down by
one extra logarithm.
The filling probability of a bin is at least as large as that obtained

from the requirement of the occurrence of both of two independent
events: a jump into the bin from the source that occurs before some
chosen initial time, TI , and the bin being filled from that single
seed by a time, TB +TI . The probability of a jump into a bin is at
least 1− e−Wn in terms of a conveniently chosen lower bound, Wn,
on the expected number of jumps from the source into the farthest
away bin, and the probability of the bin being filled from the single
seed is at least PSð~ℓn;TB;ΦnÞ. We find iterative bounds on PS that
are convenient to write in the form

PSðr; t;ΦÞ≥ 1− e−Λðr;t;ΦÞ [S39]

so that

1− fn ≤ e−Wn + e−ΛB with ΛB ≡Λ
�
~ℓn;TB;Φn

�
: [S40]

For convenience we chose conditions so that ΛB ≥Wn and
1− fn ≤ ð1=2Þð1−ϕnÞ, which, for Kn large, makes the probability
that a fraction ϕn of the bins are not filled exponentially small.
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We henceforth ignore this factor in the probability as it does not
matter except on small scales: Adjustments to take it into ac-
count are straightforward. We thus require that

ΛB ≥Wn ≥ log
�ð1−ϕnÞ

4

�
= ð1+ αÞlog n+Oð1Þ: [S41]

To obtain a bound on PSð~ℓn+1;T;Φn+1Þ, we must show that a
source that can give rise to an average number at least Wn of
jumps into the farthest bin by time TI occurs with probability that
is somewhat larger than the desired bound at the next scale. The
expected effective number of jumps out of the source of size ~ℓn
into a bin of the same size a distance up to ~ℓn+1 away before time
~τn was assumed in the deterministic iterative approximation to be
of order

ffiffiffiffiffiffi
~Dn

p
~τn. To ensure that the average number from the

actual source is sufficiently large, we can require that it be almost
filled by some time TS and include only jumps that occur be-
tween TS and TI as the rate of these is bounded below by the
filling at TS. The required range is

TI −TS =
Wn~τn

ffiffiffiffiffiffi
~Dn

p
Φn

: [S42]

We now proceed by induction and show that if

Λ
�
~ℓn; t;Φn

�
≥ γnðt−Un~τnÞ [S43]

for t in a range such that Λ is relatively large—the precise range
is not crucial but minor modifications are needed to extend out
to arbitrary large t—then a similar bound holds at the next scale
with coefficients γn+1 and Un+1 with both these varying slowly
with n at large scales. Note that at the smallest scale the prob-
ability that a site is filled by a jump directly from the origin by
time t converges exponentially to unity for long t, and thus at the
smallest scales there is a trivial bound of this form. As the scale is
increased, γn will initially change, but once the scale becomes
large enough that the width of the distribution of the fraction of
the bins mostly filled is small, then γn saturates and becomes
weakly dependent on n. In the analysis below, it can be replaced
by a constant.
Consider a total time T to mostly fill out to ~ℓn+1. The time for

the bins to fill with sufficiently high probability once they have
been seeded is TB ≤Un~τn +Wn=γn. With TI −TS as above, we have
a time for the source to fill

TS ≥T −~τn

"
Un +

Wn

ffiffiffiffiffiffi
~Dn

p
Φn

#
−
Wn

γn
: [S44]

Plugging in the probability that the source is filled in this time
gives a bound on ΛðT;~ℓn+1;Φn+1Þ of the same form but with,
dividing out ~τn+1 = 2~τn,

Un+1 ≤Un +
Wn

ffiffiffiffiffiffi
~Dn

p
2Φn

+
Wn

2γ~τn
: [S45]

As ~τn increases rapidly and Wn only slowly, the last term con-
tributes only at small scales.
For the long-range regime, ~Dn ∼ e−η log 2 n so the second term in

[S45] is also small except at small scales and we conclude that U
is bounded above by a μ-dependent constant. Thus, the lower
bound for ℓðtÞ and the upper bound for τðrÞ have exactly the same
form as the opposite bounds, except with the scale of t—i.e.,
B−1=η
μ —different.

For the marginal case, ~Dn ≈ 2=n so that Un changes slowly at
large scales. Integrating up, we see that

Un <C
ffiffiffi
n

p
log n∼

ffiffiffiffiffiffiffiffiffiffiffi
log~τn

p
  log log~τn [S46]

with a coefficient independent of n (but depending on Φ and
α). We can now solve for the timescale above which mostly
filled is likely, τ>ðrÞ=Uð~τðrÞÞ~τðrÞ, to find a lower bound, ℓ<ðtÞ,
on ℓðtÞ,

logðℓðtÞÞ≥ logðℓ<ðtÞÞ= logðtÞ
4 log 2

½log t− 2 log log t−Oðlog log log tÞ�;
[S47]

which is very close to the upper bound derived above,

logðℓðtÞÞ≤ logðℓ>ðtÞÞ= logðtÞ
4 log 2

½log t− log log t−Oð1Þ�; [S48]

differing only in the coefficient of the correction term.
One of the advantages of this iterative approach is that the

crossover regime can be handled similarly by integrating up [S45].
The lower bound will be similar to the upper bound throughout
this crossover regime and into the asymptotic regimes for the
marginal and long-range cases.
2. Fluctuations and intermediate-range regime. The reason that the
fluctuation effects are relatively small for the marginal and long-
range regimes is that at each successive timescale, more and more
roughly independent long jumps are involved in filling up to the
next length scale; i.e., Kn continues to grow. For the long-range
regime, it grows so rapidly that almost all of the fluctuations
come from early times: This is like what occurs for the fully mixed
model. For the marginal case, the fluctuations are dominated by the
smallest scales but the cumulative effects of them over the longer
scales do make a difference as found in obtaining the lower bounds.
For the intermediate-range case, the ratio of length scales for

each factor of 2 in the timescale saturates (when out of the
crossover regime) at K ≈ 2β. This means that whatever fraction,
ϕn, of the bins are to be filled at each scale, the probability that
this occurs either decreases with scale if the product of the ϕn
does not go to zero or saturates to a constant if the ϕn s do also,
in which case the overall filling fraction Φn tends to zero as a
power of time. At each scale there are a comparable number of
long jumps that are needed, and thus we should expect that fluc-
tuation effects will be scale invariant and not decrease with scale.
To get useful lower bounds on ℓðtÞ via an upper bound on τðrÞ,

τ>ðrÞ, the easiest way is to require that the source be completely
full and that jumps from this completely fill all of the bins at the
next scale: This avoids the problems with the ϕn. As the proba-
bility that all of the bins are filled is (readily) bounded only by
ð1− e−W − e−ΛBÞK ≈ 1− 2Ke−W if we again chose ΛB ≥W , W must
be larger by logK ≈ β log 2 than for the partially filled analysis
above. Carrying through to a similar analysis gives for large β
a coefficient γn ≈ 2

ffiffiffi
β

p
=ðn~τnÞ, which means that the filling prob-

ability decays for large times as roughly the inverse of the typical
time—natural as the needed long jumps that occur at rate ∼ 1=~τn
have a distribution of when they occur on the same timescale.
Note the contrast to the rapid decay of the not mostly filled
probability on a timescale of order unity from the partially filled
bound derived above. The time beyond which the full filling is
likely is bounded only by, in this analysis, ~τnUn ∼~τn

ffiffiffi
β

p
n2. This

gives a lower bound on ℓðtÞ proportional to tβ=log2βt. Although
on a logarithmic scale the additional factor is smaller, we wish to
do better.
The bound can be improved by considering a source that is

somewhat smaller—by a factor of 2 is sufficient—than ~ℓn, which
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increases the probability that it is filled, but means that more
extra time, TI −TS, is needed to produce a mean number of
jumps to the farthest bin of at least W. Using that U and γ~τ vary
slowly with scale, one can expand Λðr; tÞ around r=~ℓn and ana-
lyze the changes on the bounds at the next scale. This improves
the bounds to γ ∼ 1=ð ffiffiffi

β
p

~τÞ and U ∼ β5=2 with β= 1=ðμ− 1Þ. The
resulting lower bound on ℓðtÞ is

ℓðtÞ>fAμβ
−5β

2 tβ [S49]

with the coefficient fAμ ∼ 4β
2
that from the deterministic iteration,

which is the same, up to an order unity prefactor, as the upper
bound. It is not clear where between the lower and upper bounds
on the coefficient will be the typical behavior or how broad the
fluctuations will be—even on a log scale.
The behavior as μ↗2 we have not analyzed explicitly, instead

focusing on the rapidly growing regime for μ↘1, but the bounds
will be of similar form although more care is needed to get upper
and lower bounds reasonably close to one another due to the
important jumps being only a modest fraction of the size of the
already occupied region.
For the marginal case, μ= 1, one can find an upper bound on the

time at which the region out to r is likely to be fully filled by similar
methods to that for the intermediate-range power-law regime. This
yields a bound ℓΦ=1

< ðtÞ of the same form as that above for partial
filling ðΦ< 1Þ, except with the coefficient of the log log t term in
[S47] equal to 6 instead of 2. The convergence of the probability
of being fully filled is, however, much slower for this bound on
compete filling than for the bound on being mostly filled. Whereas
the latter converges for t> τΦ>ðrÞ∼~τðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log~τðrÞp
log log~τðrÞ with a

rate of order unity—dominated by the small scales—the former
converges as the time increases above τΦ=1

> ðrÞ∼~τðrÞlog5=2~τðrÞ on
a timescale, 1=γ, of order ~τðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log~τðrÞp
—faster than τΦ=1

> ðrÞ but
not much so.
Note that the convergence of the probability for being mostly

filled to more than a fixed filling fraction, Φ, is a hybrid property:
The probability of a fixed site being filled by time t, qðr; tÞ, is
bounded below by (roughly) the product of Φ and the probability
that the region out to r is filled to above Φ. To get the conver-
gence of this to unity, Φ needs to be adjusted and the thus-far
ignored logð1−ΦÞ factors kept track of. This also necessitates
treating intermediate scales differently as the number of bins
that do not need to be filled, ð1− fnÞKn, is not large. However, a
different approach would provide a better bound: Focusing on a
specific site being filled with high probability can be done by
a method more analogous to the funnel picture in the main text.
For the site to be filled, it needs to be in a small-scale bin that is
mostly but not necessarily fully filled with high probability, which
needs itself to be in a larger bin similarly, etc. However, these
can be filled from source regions that are not fully filled: Being
partly filled with high enough probability is sufficient. We have
not carried out such analysis in detail in part because the actual

mechanism by which sites that are empty for an anomalously long
time will be filled is more complicated as it will involve filling from
nearby regions on a hierarchy of scales that were filled at more
typical times.
The analyses here can be immediately extended to give lower

bounds on the average density profile at long distances: These will
be of the same form as the lower bounds, thus demonstrating that
the predicted ℓðtÞ−ð1+μÞ=r is essentially correct.
3. Comparisons with results of Chatterjee and Dey.As noted in the main
text, when this work was essentially complete, a preprint by
Chatterjee and Dey (CD) appeared, which derives and proves
some results closely related to ours in the context of long-range
first passage percolation, which is essentially equivalent to the
lattice dispersal model, with the jump kernel GðrÞ∼ r−α equivalent
to the 1=r−ðd+μÞ that we use (2). Although some of the quantities
CD focus on are different, the leading asymptotic scaling behav-
iors they obtain are essentially the same, and their proofs apply in
all dimensions. Our qðr; tÞ corresponds to the probability that the
first passage time TFðrÞ is less than t and their diameter, DðtÞ—the
maximum distance between any pair of occupied points at time t—
is, with high probability that decays as a power of ℓ=D—not many
times ℓðtÞ, as we both obtain.
CD give heuristic arguments for the extent of the linear regime,

the behavior in the power-law regime, and where this breaks down
(at μ= d), which are related to ours. Some of their bounds also
make use of inequalities related to the simplified form of our
self-consistency condition, Eq. 4.
However, CD’s results are suboptimal. In particular, for the

coefficient, C, of log ℓðtÞ=log2 t in the marginal case, they obtain only
upper and lower bounds instead of our exact result C= 1=4d log 2.
Indeed, in one dimension we obtain rather tight upper and lower
bounds on the errors,

1− c−
log log t
log t

<
4 log 2 log ℓðtÞ

log2 t
< 1−

log log t
log t

[S50]

with high probability—in senses that can be made precise from
our analysis—with the coefficient c− either 2 or 6, depending on
the definition of ℓðtÞ used. In the intermediate-range power-law
growth regime, CD’s theorems do not appear to exclude log t
prefactors in ℓðtÞ, although their analysis might well do so. How-
ever, the main difference is our analysis of the whole crossover
regime for μ near d, including the divergences and vanishings of
coefficients of the asymptotic forms, which they do not consider.
These are crucial for comparisons with simulations because of
the very long length scales of the crossovers.
To turn our upper and lower bounds into formal proofs in one

dimension requires primarily filling in some details associated
with the small-scale regime. For higher dimensions substantial
additional workmay be needed, although we believe the strategies
we developed here should work without major modifications.

1. Mollison D (1972) The rate of spatial propagation of simple epidemics. Proceedings of
the Sixth Berkeley Symposium on Mathematical Statistics and Probability, eds Le Cam
LM, Neyman J, Scott EL (Univ of California Press, Berkeley, CA), Vol 3, pp 579–614.

2. Chatterjee S, Dey PS (2013) Multiple phase transitions in long-range first-passage
percolation on square lattices. arXiv:1309.5757.

Hallatschek and Fisher www.pnas.org/cgi/content/short/1404663111 8 of 10

www.pnas.org/cgi/content/short/1404663111


Fig. S1. Summary of the spreading dynamics in two spatial dimensions. The effective radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðtÞ=πp

of the region occupied by the mutant population is
plotted as a function of time t, for various long-range jump kernels. Each colored cloud represents data obtained from 10 runs for a given jump kernel with tail
exponent μ as indicated. Red dashed lines represent predictions, obtained from Eq. 8 (main text) with fitted crossover scales. The jump exponents are
μ∈ f1:6,1:8,1:9,2:1,2:3,2:5g.

Fig. S2. Summary of the spreading dynamics in one spatial dimension with short-range as well as long-range dispersal. The total number of occupied sites
MðtÞ (the “mass”) is shown as a function of time. For these simulations each cluster expands at a linear speed even in the absence of long-range jumps. In each
time step, a long-range jump is performed only with probability ~e= 0:1. For the short-range part, a pair of neighboring sites is chosen at random. If this pair
happens to fall on a boundary of a mutant cluster, i.e., the identity of both sites is mixed, then the wild-type site is switched to a mutant site. This leads to
expansion of mutant clusters at average speed of v0 = 2 sites per generation. The jump exponents are μ∈ f0:6,0:7,0:8,0:9,1:0,1:1,1:2,1:3,1:4g from the fastest- to
the slowest-growing case. The theoretical predictions indicated by the red dashed lines fit the data after choosing appropriate crossover timescales and length
scales between linear growth and superlinear growth.

Fig. S3. The prefactor Aμ of the predicted power law growth in Eq. 3 (main text) in one dimension: ℓðtÞ≈Aμtβ with β= 1=ðμ− 1Þ for 1< μ< 2. The blue curve is
obtained numerically from solving Eq. 1 (main text) with the power-law ansatz; the red curve represents an analytic approximation derived in Crossovers and
Beyond Asymptopia (main text). Note the sharp (nonanalytic) drop of the prefactor as μ approaches 1. The reason is very slow crossover to the power law from
an intermediate asymptotic regime controlled by the dynamics of the marginal case. As μ approaches 2, the prefactor diverges as Aμ ∼ ð2− μÞ−1, indicative of
another slow crossover at μ= 2 (Fig. S4).

Hallatschek and Fisher www.pnas.org/cgi/content/short/1404663111 9 of 10

www.pnas.org/cgi/content/short/1404663111


Fig. S4. Dynamics of growth in one dimension at the marginal point between superlinear and linear growth, μ= 2. The number of mutant sites, MðtÞ, scaled
by time, MðtÞ=t, is plotted as a function of time, averaged over 10 realizations (black) and for two individual realizations (red and green). Whereas the av-
eraged data suggest MðtÞ∼ t lnðtÞ, the individual realizations indicate strong fluctuations caused by occasional rare jumps, which are of order t. These leaps
forward (1) are driving the logarithmic increase of the spreading velocity.
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