1. Martinac B, Buechner M, Delcour AH, Adler J, Kung C. 1987. Pressure-sensitive ion channel in Escherichia coli. Proc Natl Acad Sci U S A 84:2297–301.

2. Bavi N, Cortes DM, Cox CD, Rohde PR, Liu W, Deitmer JW, Bavi O, Strop P, Hill AP, Rees D, Corry B, Perozo E, Martinac B. 2016. The role of MscL amphipathic N terminus indicates a blueprint for bilayer-mediated gating of mechanosensitive channels. Nature Communications 7:11984.

3. Bialecka-Fornal M, Lee HJ, DeBerg HA, Gandhi CS, Phillips R. 2012. Single-Cell Census of Mechanosensitive Channels in Living Bacteria. PLoS ONE 7:e33077.

4. Bialecka-Fornal M, Lee HJ, Phillips R. 2015. The Rate of Osmotic Downshock Determines the Survival Probability of Bacterial Mechanosensitive Channel Mutants. Journal of Bacteriology 197:231–237.

5. Edwards MD, Black S, Rasmussen T, Rasmussen A, Stokes NR, Stephen TL, Miller S, Booth IR. Jul-Aug 20122012. Characterization of three novel mechanosensitive channel activities in Escherichia coli. Channels (Austin) 6:272–81.

6. Naismith JH, Booth IR. 2012. Bacterial mechanosensitive channels–MscS: Evolution’s solution to creating sensitivity in function. Annu Rev Biophys 41:157–77.

7. Ursell T, Phillips R, Kondev J, Reeves D, Wiggins PA. 2008. The role of lipid bilayer mechanics in mechanosensation, pp. 37–70. In Kamkin, A, Kiseleva, I (eds.), Mechanosensitivity in cells and tissues 1: Mechanosensitive ion channels. Springer-Verlag.

8. van den Berg J, Galbiati H, Rasmussen A, Miller S, Poolman B. 2016. On the mobility, membrane location and functionality of mechanosensitive channels in Escherichia coli. Scientific Reports 6.

9. Cruickshank CC, Minchin RF, Le Dain AC, Martinac B. 1997. Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli. Biophysical Journal 73:1925–1931.

10. Haswell ES, Phillips R, Rees DC. 2011. Mechanosensitive Channels: What Can They Do and How Do They Do It? Structure 19:1356–1369.

11. Louhivuori M, Risselada HJ, van der Giessen E, Marrink SJ. 2010. Release of content through mechano-sensitive gates in pressurized liposomes. Proc Natl Acad Sci U S A 107:19856–60.

12. Milo R, Jorgensen P, Moran U, Weber G, Springer M. 2010. BioNumbersthe database of key numbers in molecular and cell biology. Nucleic Acids Research 38:D750–D753.

13. Booth IR, Edwards MD, Murray E, Miller S. 2005. The role of bacterial ion channels in cell physiology, pp. 291–312. In Kubalsi, A, Martinac, B (eds.), Bacterial Ion Channels and Their Eukaryotic Homologs. American Society for Microbiology, Washington DC.

14. Hase CC, Minchin RF, Kloda A, Martinac B. 1997. Cross-linking studies and membrane localization and assembly of radiolabelled large mechanosensitive ion channel (MscL) of Escherichia coli. Biochem Biophys Res Commun 232:777–82.

15. Schmidt A, Kochanowski K, Vedelaar S, Ahrné E, Volkmer B, Callipo L, Knoops K, Bauer M, Aebersold R, Heinemann M. 2016. The quantitative and condition-dependent Escherichia coli proteome. Nature Biotechnology 34:104–110.

16. Soufi B, Krug K, Harst A, Macek B. 2015. Characterization of the E. coli proteome and its modifications during growth and ethanol stress. Frontiers in Microbiology 6.

17. Stokes NR, Murray HD, Subramaniam C, Gourse RL, Louis P, Bartlett W, Miller S, Booth IR. 2003. A role for mechanosensitive channels in survival of stationary phase: Regulation of channel expression by RpoS. Proceedings of the National Academy of Sciences 100:15959–15964.

18. Norman C, Liu ZW, Rigby P, Raso A, Petrov Y, Martinac B. 2005. Visualisation of the mechanosensitive channel of large conductance in bacteria using confocal microscopy. Eur Biophys J 34:396–402.

19. Espah Borujeni A, Channarasappa AS, Salis HM. 2014. Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids Research 42:2646–2659.

20. Salis HM, Mirsky EA, Voigt CA. 2009. Automated design of synthetic ribosome binding sites to control protein expression. Nature Biotechnology 27:946–950.

21. Elowitz MB, Levine AJ, Siggia ED, Swain PS. 2002. Stochastic gene expression in a single cell. Science 297:1183–6.

22. Anderson RP, Jin R, Grunkemeier GL. 2003. Understanding logistic regression analysis in clinical reports: An introduction. The Annals of Thoracic Surgery 75:753–757.

23. Mishra V, Skotak M, Schuetz H, Heller A, Haorah J, Chandra N. 2016. Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model. Scientific Reports 6:26992.

24. Feeling-Taylor AR, Yau S-T, Petsev DN, Nagel RL, Hirsch RE, Vekilov PG. 2004. Crystallization Mechanisms of Hemoglobin C in the R State. Biophysical Journal 87:2621–2629.

25. Finch JT, Perutz MF, Bertles JF, Dobler J. 1973. Structure of Sickled Erythrocytes and of Sickle-Cell Hemoglobin Fibers. Proceedings of the National Academy of Sciences 70:718–722.

26. Perutz MF, Mitchison JM. 1950. State of Hæmoglobin in Sickle-Cell Anæmia. Nature 166:677–679.

27. Berg H, Purcell E. 1977. Physics of chemoreception. Biophysical Journal 20:193–219.

28. Colin R, Sourjik V. 2017. Emergent properties of bacterial chemotaxis pathway. Current Opinion in Microbiology 39:24–33.

29. Krembel A, Colin R, Sourjik V. 2015. Importance of Multiple Methylation Sites in Escherichia coli Chemotaxis. PLoS ONE 10.

30. Krembel AK, Neumann S, Sourjik V. 2015. Universal Response-Adaptation Relation in Bacterial Chemotaxis. Journal of Bacteriology 197:307–313.

31. Sourjik V, Berg HC. 2002. Receptor sensitivity in bacterial chemotaxis. Proceedings of the National Academy of Sciences 99:123–127.

32. Liu F, Morrison AH, Gregor T. 2013. Dynamic interpretation of maternal inputs by the Drosophila segmentation gene network. Proceedings of the National Academy of Sciences of the United States of America 110:6724–6729.

33. Lovely GA, Brewster RC, Schatz DG, Baltimore D, Phillips R. 2015. Single-molecule analysis of RAG-mediated V(D)J DNA cleavage. Proceedings of the National Academy of Sciences 112:E1715–E1723.

34. Schatz DG, Baltimore D. 2004. Uncovering the V(D)J recombinase. Cell 116:S103–S108.

35. Schatz DG, Ji Y. 2011. Recombination centres and the orchestration of V(D)J recombination. Nature Reviews Immunology 11:251–263.

36. Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM. 2004. Telomere Shortening Triggers Senescence of Human Cells through a Pathway Involving ATM, p53, and p21CIP1, but Not p16INK4a. Molecular Cell 14:501–513.

37. Victorelli S, Passos JF. 2017. Telomeres and Cell Senescence - Size Matters Not. EBioMedicine 21:14–20.

38. Booth IR. 2014. Bacterial mechanosensitive channels: Progress towards an understanding of their roles in cell physiology. Current Opinion in Microbiology 18:16–22.

39. Li G-W, Burkhardt D, Gross C, Weissman JS. 2014. Quantifying Absolute Protein Synthesis Rates Reveals Principles Underlying Allocation of Cellular Resources. Cell 157:624–635.

40. Blount P, Sukharev SI, Moe PC, Martinac B, Kung C. 1999. Mechanosensitive channels of bacteria. Methods in Enzymology 294:458–482.

41. Schumann U, Edwards MD, Rasmussen T, Bartlett W, van West P, Booth IR. 2010. YbdG in Escherichia coli is a threshold-setting mechanosensitive channel with MscM activity. Proc Natl Acad Sci U S A 107:12664–9.

42. Li X-t, Thomason LC, Sawitzke JA, Costantino N, Court DL. 2013. Positive and negative selection using the tetA-sacB cassette: Recombineering and P1 transduction in Escherichia coli. Nucleic acids research 41:e204–e204.

43. Bochner BR, Huang H-C, Schieven GL, Ames BN. 1980. Positive selection for loss of tetracycline resistance. Journal of bacteriology 143:926–933.

44. Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo J, Li P, Riddell A. 2017. Stan : A Probabilistic Programming Language. Journal of Statistical Software 76.

45. Chure G, Lee HJ, Phillips R. 2018. Image data for “Connecting the dots between mechanosensitive channel abundance, osmotic shock, and survival at single-cell resolution” accessible through DOI: 10.22002/D1.941.

46. Chure G, Lee HJ, Phillips R. 2018. MCMC chains generated in “Connecting the dots between mechanosensitive channel abundance, osmotic shock, and survival at single-cell resolution” accessible through DOI 10.22002/D1.942.

47. Chure G, Lee HJ, Phillips R. 2018. Github repository for “Connecting the dots between mechanosensitive channel abundance, osmotic shock, and survival at single-cell resolution” accessible through DOI: 10.5281/zenodo.1252524.