
Nonlinear Regression

© 2017 Griffin Chure. This work is licensed under a Creative Commons Attribution License CC-BY 4.0.
All code contained herein is licensed under an MIT license

In this tutorial...

In this tutorial, we will learn how to perform nonlinear regression using the statistic by estimating the
DNA binding energy of the lacI repressor to the O2 operator DNA sequence.

What is probability?

One of the most powerful skills a scientist can possess is a knowledge of probability and statistics. I can
nearly guarantee that regardless of discipline, you will have to perform a nonlinear regression and report
the value of a parameter. Before we get into the details, let's briefly touch on what we mean we report
the "value of a parameter".

What we seek to identify through parameter estimation is the value of a given parameter which
best describes the data under a given model. Estimation of a parameter is intimately tied to
our interpretation of probability of which there are two major schools of thought (Frequentism and
Bayesian). A detailed discussion of these two interpretations is outside the scope of this tutorial, but see
this wonderful 25 minute video on Bayesian vs Frequentist probability by Jake VanderPlas. Also see
BE/Bi 103 - Data Analysis in the Biological Sciences by Justin Bois, which is one of the best courses I
have ever taken.

How do we estimate a parameter?

Above, we defined a parameter value as that which best describes our data given a specific model, but

what do we mean by "best describes"? Imagine we have some set of data (and , which are linearly
correlated, as is shown in the figure below.

We can generate a model for this process of the form

https://creativecommons.org/licenses/by/4.0/
https://opensource.org/licenses/MIT
https://en.wikipedia.org/wiki/Frequentist_probability
https://en.wikipedia.org/wiki/Bayesian_probability
https://www.youtube.com/watch?v=KhAUfqhLakw
https://staff.washington.edu/jakevdp/
http://bebi103.caltech.edu/
http://bois.caltech.edu/

where is is the parameter we are interested in estimating. Our gut instinct is to say that the best
estimate of α is the value in which the difference between each data point and the line resulting from our
model is the smallest. This value is called the residual.

We can assume that the noise in our data is Gaussian distributed about this model, meaning that we are
assuming there are no outliers. Under this assumption, we can compute the sum of the squares of the

residuals of all the data points for a range of values of . This is called the Chi-squared statistic,

where is the data point, is the predcted value of using a given value of , and is the

variance of the datum. The value of which minimizes is deemed the "best-fit" parameter value.

In the following section, we will use this method of non-linear regression to infer the DNA binding energy
of the LacI repressor to the DNA

The Data Set

As an example, we will use the data from Hernan Garcia and Rob Phillips' 2011 paper Quantitative
dissection of the simple repression input-output function. In this paper, Hernan and Rob developed a
statistical mechanical model of gene regulation. I won't go into the details of the derivation in this tutorial,
but when the dust settles, we are left with a beautifully simple expression that summarizes the fold-
change in gene expression,

where is the number of repressors per cell, is the number of non-specific binding sites available

for the repressor, is the thermal energy of the system, and is the binding energy of the
repressor, which is the parameter we would like to estimate. Hernan set up these experiments by

http://www.pnas.org/content/108/29/12173.abstract

generating a simple repression construct in which the expression of a lacZ enzyme was regulated by the
lacI repressor binding to a single binding site directly upstream of the transcription start site.

He quantified the number of repressors per cell through (a lot) of quantitative Western blotting.
This allowed him to make very specific measurements of the fold-change quantity to test this theory.
We'll use all of his data from this paper to estimate the binding energy of the three native lac operon

operators O1, O2, and O3.

The data set can be downloaded from the course website. To begin, we'll load in this file using the
MATLAB function readtable.

% Load in the 2011 Garcia data
data = readtable('data/lacZ_titration_data.csv')

data =
 repressor fold_change operator
 _________ ___________ ________

 22.42 0.1756 'O2'
 59.34 0.04519 'O2'
 124 0.02151 'O2'
 255.3 0.01241 'O2'

Here, we can see that we have four data points in this file. We have cells with a range of average
repressor copy number, the fold-change in gene expression, and the respective operator identity 'O2'.
Let's plot the fold-change as a function of repressor copy number to get a feeling for the behavior of the
data.

% Plot the repressor copy number vs the fold_change
loglog(data.repressor, data.fold_change, 'o')
xlabel('number of repressors')
ylabel('fold-change')

% Show the full limits of the fold-change.
ylim([1E-3, 1])

http://www.rpgroup.caltech.edu/courses/bi1_2017/data/lacZ_titration_data.csv

Now, a good fit would be a value of that minimizes the difference between the prediction and the
measured fold-change data. To get a "by-eye" estimate of the binding energy, we are going set up a

vector spanning a large range of these energies and evaluate the statistic at each energy value. We
can use our biological intuition to pick some bounds that are sensical. For example, we know that the

repressor binds the DNA with some affinity. That means that it must have some binding energy .
Likewise, we know that the binding of the repressor to the DNA is not covalent, so it should be weaker
than that energy scale. The strongest known non-covalent bond is between streptavidin and biotin with

a dissociation constant of . We can convert this to an energy in units of by

where is a reference concentration of . Using these bounds of , we can
perform the regression!

% Set up the range of binding energies to look at.
epRange = linspace(-30, 0, 500);

% Extract the repressors and the fold-change values from the data.
repressors = data.repressor;
foldChange = data.fold_change;

% Loop through each energy and compute the chi squared.
for ep=1:length(epRange)
 % Compute the theoretical value.
 theo = (1 + (repressors / 5E6) * exp(-epRange(ep))).^-1;

 % Compute the chisquared from the data and store it.
 chiSq(ep) = sum((theo - foldChange).^2);
end

Now, let's plot the value for each value of the binding energy that we computed.

plot(epRange, chiSq, '-o')
xlabel('binding energy (k_BT)')
ylabel('χ^2')

https://en.wikipedia.org/wiki/Streptavidin

Wow! The statistic blows up after around -12 or -13 . To get a better sense of where the

minimum is, we can plot this with a log scale on the -axis since this is covering several orders of
magnitude.

% Plot it with semilogy
semilogy(epRange, chiSq, '-o')
xlabel('binding energy (k_BT)')
ylabel('χ^2')

There's the minimum! Remember, the smaller the sum of the squares of the residuals, the better the

fit. By zooming in to the plot above, it looks like the minimum is right around ~ Let's plot two
examples of "bad" fits along with this value and see how well it matches the data.

% Pick two values of a "bad" fit.
badEp1 = -20; % in units of k_BT
badEp2 = -10; % in units of k_BT

% Now define our best fit.
bestEp = -14; % in units of k_BT.

epValues = [badEp1, badEp2, bestEp];
% Now compute the curves for these fits.
repRange = logspace(0, 4, 500);

for i=1:length(epValues)
 fit = (1 + (repRange ./ 5E6) * exp(-epValues(i))).^-1;

 % Plot the fits.
 loglog(repRange, fit, '-', 'LineWidth', 2, 'DisplayName',...
 [num2str(epValues(i)), ' k_BT']);
 hold on
end

% Now plot the experimental data.
loglog(repressors, foldChange, 'bo', 'DisplayName', 'data');

% Now add a legend
legend('-DynamicLegend');

% And of course, some labels.
xlabel('number of repressors')
ylabel('fold-change')
hold off;

That looks pretty good! We can see that the binding energy gives a very nice fit while the
others are quite a bit off (afterall, we expected them to be bad!).

While that more-or-less covers how a sum-squares minimizer works, this is not how you should be
fitting data in your daily life.

How you should be fitting your data

In the above example, we went through and set up an array of values to compute the statistic
over. By zooming in on the minimum, we were able to pick a value by hand that seemed to be the

minimum. However, we only computed the over a range of values that we specifically wrote
out using the linspace function! This means that if were were to choose more points, the values
that our algorithm would calculate over would increas and threfore give us an even more precise
measurement of the best fit value. Obvioulsy, this introduces some degree of bias into your analysis
that you (hopefully) don't want! Furthermore, we did this analysis by trying to fit only one parameter of a

very well-behaved function. If we had two parameters we wanted to estimate (such as and), this
becomes much more difficult to compute and the function may have multiple minima which produce the
same fit.

For these reasons, it's better to use a more complicated algorithm to determine these values. Perhaps
the most common nonlinear regression algorithm used is the Levenberg-Marquardt algorithm which

takes a very interesting approach. This algorithm identifies a local minimum in the given an initial
guess value. It will then go through another round of this local minimum detection until a stopping
criterion is satisfied. If you're interested in the details of this optimization procedure, see this set of notes
from Henry P. Gavin at Duke University.

In MATLAB, the lsqnonlin function uses essentially this algorithm with a few kinks. To use this
function, we will have to define a function called residFunc which computes the difference between
our theoretical prediction and our data. Unfortuantely, functions in MATLAB need to be their own file.
Instead of writing this different file, I'm going to define something called an anonymous function which
is essentially a one-line function. If you are interested, come talk to me privately or send me an email
(gchure@caltech.edu) and we can go over it.

% Define the anonymous function
residFunc = @(epVal) (sum((foldChange - (1 + (repressors ./ 5E6)*exp(-epVal)).^-1).^2));

Now we can just call the residFunc function within the MATLAB lsqnonlin to determine a better
estimate of the best binding energy value.

%Use the lsqnonlin function.
funcEp = lsqnonlin(residFunc,-14)

Local minimum found.

Optimization completed because the size of the gradient is less than
the default value of the optimality tolerance.

<stopping criteria details>
funcEp = -13.9679

And there we go! It looks like our guess of was pretty close! Let's go ahead and plot the result
from this fitting ontop of our best fit "by-eye" estimate.

% Compute the fold-change using the best fit and the funcFit value.
eps = [bestEp, funcEp];
for ep=1:length(eps)
 theo = (1 + (repRange / 5E6) * exp(-eps(ep))).^-1;
 loglog(repRange, theo, '-', 'DisplayName', num2str(eps(ep)), 'LineWidth', 3);
 hold on;

https://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm
http://people.duke.edu/~hpgavin/ce281/lm.pdf

end

% Now plot the data.
loglog(repressors, foldChange, 'o', 'DisplayName', 'data');

% Add a legend and labels.
legend('-DynamicLegend');
xlabel('number of repressors');
ylabel('fold-change');
hold off

As expected, there is very little difference in our fit, but it is still better to use the well tested algorithms
packaged with MATLAB.

In conclusion...

In this tutorial, we learned what it means to report a parameter value, a simple scheme for estimating
parameter values, and some interesting information about how tightly a lacI repressor binds DNA. While

plotting the statistic is useful pedagogically, this becomes far more complicated if you are fitting
more than one parameter. Furthermore, your model of interest may have many local minima that you
may misidentify as the best-fit parameter value. When you inevitably do regression in your "real-life"
research, you should be aware of these issues and use an appropriate algorithm.

