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Introduction

T
he decision letter from the journal was

very supportive – it was clear our paper

(Kirkegaard et al., 2016) would be pub-

lished – but one of the referees definitely did

not like the way we had combined experimental

biology and physical calculations in our paper:

“The data should be described and the infer-

ences drawn, and the modelling relegated to its

proper place as quantitative verification of the

inferences that can be made directly from the

data.”

And this was not an isolated case; a referee

of another paper had said: “Instead, the authors

should let the data speak for itself, and post-

pone heavier theoretical analysis for later, per-

haps in the Discussion.” Many of my colleagues

have experienced the same reaction to papers

mixing theory and experiment. What were we

doing wrong? Why was it not OK, according to

these referees, to present the observations and

the theory in a back-and-forth dialogue within

the ‘Results’ section?

While I was bemused by these statements

(relegated!), they resonated with my long experi-

ence with some in the biology community,

namely that they see the significance of theory

very differently from the way physicists under-

stand it. For many biologists, theoretical results

are simply not ‘Results’. Indeed, I suspect to

many they are seen as a matter of opinion, with-

out any intrinsic significance. In essence, they

don’t add anything new. Hence the belief in the

canonical Results/Discussion dichotomy in which

theory (or ‘modelling’, as it is often called) plays

second fiddle, or third.

In contrast, physicists are brought up to think

by means of mathematical models: harmonic

oscillators, random walks, idealized electrical cir-

cuits and so on are among the tools in our tool-

box, whether we do experiment or theory. We

use them as solvable examples in which a well-

defined set of assumptions leads to precise out-

comes, and where the dependence of the out-

comes on the various parameters in the model

can be interpreted. This approach allows us to

estimate what is important and what is not in

any setting. Models also help us to think about

problems: “If this is the underlying physics, then

A should vary with B quadratically. . .”, or “under

these assumptions, the data should collapse like

this. . .” or, when we spot something is not quite

right, “here I argue that these claims are in con-

flict with basic laws of physics” (Meister, 2016).

The role of theory is also intimately con-

nected with predictions. While I know biologists

who would say “who cares about a prediction in

the absence of experiment?”, physicists are

brought up to celebrate them – they are the

stuff of legend, from Dirac’s prediction of anti-

particles and Einstein’s prediction of the bend-

ing of starlight, to the work by many that

predicted the Higgs particle. We view predic-

tions as motivations for experiment and as a

means to move the discipline forward. Of

course, sometimes they turn out to be wrong,

but that is often how science works. Even if the-

oretical work does not take the form of a predic-

tion, per se, it may still be very useful to design

experiments with theory in mind, as emphasized

by Bialek (2018), who has described many his-

torical examples of the role theory has played in

biology, from Rayleigh’s work on hearing to

Watson and Crick.

My purpose here is to push back against the

view that theory is not a ‘Result’. I argue for the
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unabashed inclusion of mathematical formula-

tions and pedagogy within the body of papers

published in eLife and other primarily biological

journals. By interleaving the experimental and

theoretical results it is possible to tell a story,

and I firmly believe this makes for much more

interesting and readable papers. It is also faithful

to the scientific method, in which one goes back

and forth with experiment and hypothesis.

Readers may be interested to learn that bio-

logical information, background and results are

now routinely included in papers published in

physics journals, although this has not always

been the case: I vividly recall a situation several

decades ago when a colleague, a high-energy

physicist, saw a preprint about pattern formation

in the slime mold Dictyostelium discoideum on

my desk and asked: “Why would any physicist

study something as ridiculous as that?” But by

now many physicists do exactly that, and many

physics journals are full of discussions of cAMP

signaling, spiral waves, and chemotaxis (Gold-

stein, 1996; Rappel et al., 1999;

Gholami et al., 2015). If we really take interdis-

ciplinary research seriously then I assert there

has to be a prominent place for theory within

biology papers, both as Results in papers that

combine experiment and theory, and as Results

in theory papers.

This is nothing new. If you have not already

done so, I highly recommend reading the cele-

brated paper by Hodgkin and Huxley (1952) to

see experiments and theory interleaved. Theory

is not relegated to the discussion, or worse, to

supplementary material, but instead is incorpo-

rated into the body of the paper as if it is the

most natural thing to do. And this was in the

Journal of Physiology. The same structure is

found in the Michaelis-Menten paper, which was

published (in German) in a biochemistry journal

(Michaelis and Menten, 1913; Michaelis et al.,

2011). If this was appropriate a century ago,

why must details of mathematical models now

be relegated to the back of papers (see, for

example, Paulick et al. (2017), Ferreira et al.

(2017), and Streichan et al. (2018))?

Many readers will appreciate that the issue I

am raising about quantitative descriptions of liv-

ing systems is closely associated with the tension

that exists between the stereotypes of the biolo-

gist, who wants to incorporate all the complexity

of a particular system, and the physicist who

seeks generality and minimalism. As has been

emphasized in other recent opinion pieces

(Shou et al., 2015; Riveline and Kruse, 2017),

the role of theory in biology has been growing

and this development requires new ways of

training scientists on both sides of the physics/

biology divide. Less attention has been paid to

providing concrete examples for the biology

community of how physicists think about under-

standing data, and this essay’s goal, in part, is to

address this lacuna.

Well aware of the risks of trying to speak for

an entire community, below I take the reader

through an example of how (at least some) phys-

icists might go about describing a well-known

phenomenon that shows up everywhere in biol-

ogy – from the functioning of cellular receptors

to bacterial chemotaxis, the propagation of

action potentials, and fluorescence recovery

after photobleaching (FRAP) experiments –

namely, diffusion. Employing poetic license, I

imagine that we are at a point in time when the

diffusion equation itself was not known, nor was

Fick’s Law, so both the experimental observa-

tions and theoretical analysis presented below

are new and worthy of being described as

Results.

I compose two versions of a Results section

to indicate various ways of presenting the data

and theory interleaved in a compact presenta-

tion that (I hope) is widely understandable by

the community. The first version involves a

‘microscopic’ model that is a caricature of the

biological system, but contains the essential

ingredients to display the behavior observed on

the large scale. The way in which microscopic

parameters enter into the macroscopic answer

turns out to be general (or, as physicists say,

‘universal’), a key take-home lesson. The second

version – which is probably more challenging –

involves the use of ‘dimensional analysis’, one of

the most powerful methods of analyzing natural

phenomena. Here, relationships between various

quantities are deduced by examining the units in

which they are measured (mass, length, time,

charge, etc.). Introduced long ago, particularly in

the work of Clerk-Maxwell, 1869, this technique

can often lead to exact answers to problems, up

to the proverbial ‘factors of two’.

A discovery
Allow me to introduce our fictitious Professor

Lamarr, who has been investigating how the sin-

gle-cell green alga Chlamydomonas moves in

response to light. She has discovered that if a

narrow sheet of light is directed into an algal

suspension in a petri dish (Figure 1a), the algae

swim into the beam and form a concentrated

line of cells. When the light is turned off and
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there is no more phototactic cue, the cells

resume a random swimming motion described

previously (Polin et al., 2009), in which every 10

seconds or so their roughly linear motion is inter-

rupted by a turn: the angle of this turn falls

within a distribution that has a mean of ~90

degrees. These random turns lead the popula-

tion to spread out over time (Figure 1b). See

’Methods’ for experimental details.

Lamarr measures the normalized concentra-

tion profiles, Cðx; tÞ, in a thin strip that is perpen-

dicular to the initial line of cells, obtaining the

data shown in Figure 2a. The sharply-peaked

profile at early times gradually spreads out until

the Petri dish is uniformly filled with cells. She

measured the variance hx2i of the concentration

profile, and found the linear relation hx2i ¼ Dt,

with D ¼ 0:2 mm2/s (Figure 2b). Finally, the

Figure 1. Experimental setup to study diffusion of the green alga Chlamydomonas. (a) A light sheet is used to

gather the algae, which are swimming in a petri dish, into a narrow strip of cells along the y-axis. (b) After the light

is turned off, the cells swim randomly and spread out. The concentration profile, Cðx; tÞ, is then measured along a

thin strip parallel to the x-axis; t is time.

(a) (b)

(c)

Figure 2. Experimental results on diffusion in a population of the green alga Chlamydomonas. (a) Concentration

profiles, Cðx; tÞ, normalized to unity, at the following times: 1 second (red), 3 seconds (green), 7 seconds (blue) and

30 seconds (black). (b) The variance, hx2i, of the data shown in (a) as a function of time; the dashed magenta line is

a linear fit to the data. (c) The peak height, Cð0; tÞ, of the data shown in (a) as a function of time.
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peak height Cð0; tÞ decays smoothly with time

(Figure 2c). By systematic experimentation, she

found that the basic results were insensitive to

the precise size of the initial gathering, and that

various swimming mutants of Chlamydomonas

displayed the same behavior, albeit with differ-

ent values of D.

Results v1: Experimental observations
explained by a microscopic model

In this version of Results, we begin with a theo-

retical model of the random motions of individ-

ual cells and deduce from it a population-level

description with which to analyze the data. In

the simplest picture, we assume that cells move

only to the left and right along the x-axis, and

the cells are constrained to sit on a discrete set

of points, at positions xm ¼ mD, where m ¼
1; 2; 3; . . . (Figure 3a). Likewise, we assume time

is discrete, so at each time tn ¼ nt, n ¼ 1; 2; 3; . . .,

a cell moves with probability 1=2 to the left or

right, as indicated by the arrows in Figure 3a.

In order to find an evolution equation for the

probability CnðmÞ of finding a cell at position

mDx at time nDt we observe (Figure 3b) that cells

that appear at point m at time nþ 1 arrived there

by moving to the right from point m� 1 or by

moving to the left from point mþ 1 at the previ-

ous time step (each with probability 1=2). Thus

we can deduce that

Cnþ1ðmÞ ¼
1

2
Cnðmþ 1Þþ 1

2
Cnðm� 1Þ: (1)

We now imagine that these probabilities are

varying sufficiently slowly in space and time that

we can use the following Taylor expansions:

Cnþ1ðmÞ’CnðmÞþtðqCnðmÞ=qtÞþ� � �; and Cnðm�1Þ’
CnðmÞ�DðqCnðmÞ=qxÞþ ðD2=2Þðq2CnðmÞ=qx2Þþ � � �.
Collecting terms, we deduce that the ‘continuum

limit’ for this one-dimensional random walk is

qC

qt
¼D

q
2C

qx2
; with D¼ D

2

2t
: (2)

We term this the ‘diffusion equation’, where

the diffusion constant D has units of length2/

time. Although the above was derived in the

context of a model with discrete space and time

coordinates, the crucial point is that we can

more generally interpret D as the typical dis-

tance a cell travels between sharp turns, and t

as the time between such turns. If U is the swim-

ming speed between turns, then D~Ut, so we

can write D¼U2
t=2. From tracking studies of

Chlamydomonas, we know that U ~0:1 mm/s,

and t~10 s, and therefore D~1 mm and D~0:1

mm2/s.

If we rewrite the diffusion equation (2) as

qC=qt ¼ �ðq=qxÞð�DqC=qxÞ then it can be writ-

ten as

qC

qt
¼�qJ

qx
; where J ¼�D

qC

qx
; (3)

where we identify the flux J as the number of

cells passing through a given point x per unit

time. This relationship implies that cells pass

from regions of high concentration to

regions of low concentration at a rate propor-

tional the gradient of concentration. This ‘flux

form’ of the diffusion equation guarantees that

the total number of cells, N ¼
R

¥

�¥ dxCðx; tÞ,
remains constant over time, since

Figure 3. A random walk in one dimension. (a) A cell at site m moves with probability 1=2 to the left or right. (b)

Diagram illustrating the counting that underlies the evolution equation (Equation 1).
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dN

dt
¼
Z

¥

�¥
dx

qCðx; tÞ
qt

¼�
Z

¥

�¥
dx

qJ

qx
¼ Jð�¥Þ� Jðþ¥Þ:

(4)

Thus, provided the flux J goes to zero far

away from our point of observation, N is

constant.

The relationship (Fick’s Law) J ¼ �DqC=qx

can be tested experimentally. Lamarr recorded

the distributions of cells at the times indicated in

Figure 2 and then again 0.2 s later. As shown in

Figure 4a for one pair, such measurements yield

the flux, J, and concentration gradient, qC=qx

each as functions of x (Figure 4b), and we see

that, apart from the overall scale, they are oppo-

sitely signed, as predicted by (3). But we can

now go one step further and plot J at each point

x and time t versus qC=qx at those same x and t

values. If the theory is correct, then every data

set should collapse on to a single straight line,

and indeed this is the case (Figure 4c). Accord-

ing to the theory above, the slope of the line in

Figure 4c is the diffusion constant D; we obtain

D ¼ 0:1 mm2/s, which is consistent with the

microscopic interpretation in terms of motility.

Results v2: Dimensional analysis leads to
the diffusion equation

In this version of the Results section our goal is

to infer directly from the data a differential

equation for the time evolution of the algal con-

centration Cðx; tÞ, which is measured in organ-

isms per mm, hence units of 1/length. The

variance hx2i has, of course, units of length

squared, so we can define a characteristic, time-

dependent length ‘ðtÞ ¼
ffiffiffiffiffiffiffiffi

hx2i
p

. From the fit to

the data in Figure 2b we infer that the width of

Cðx; tÞ grows as

‘ðtÞ~
ffiffiffiffiffiffi

Dt
p

: (5)

A very natural question is whether ‘ðtÞ is the

only intrinsic length scale that can be extracted

from the data. As Cðx; tÞ has units of number/

length we can, without loss of generality, write

Cðx; tÞ ¼ ‘ðtÞ�1
Fðx; tÞ for some unknown function

F that is itself dimensionless. And since F is

Figure 4. Flux and the diffusion equation. (a) Concentration profiles, Cðx; tÞ, at times t ¼ 3 s and t ¼ 3:2 s .

(b) The flux of cells past a given point, J (black; left axis), and the concentration gradient, qC=qx (yellow; right axis),

versus position, x. (c) Flux, J, versus concentration gradient, qC=qx, for all the values of x and t shown in Figure 2a.

The dashed magenta line has a slope D ¼ 0:1 mm2/s.
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dimensionless, it must be a function of a variable

that is also dimensionless (similar to the way that

sinð�Þ is a function of �). Let us call this dimen-

sionless variable �. With x and ‘ðtÞ to work with,

only the ratio is dimensionless, so we deduce

that �¼ x=‘ðtÞ. Thus, we expect

Cðx; tÞ ¼ 1

‘ðtÞF
x

‘ðtÞ

� �

: (6)

Let us now see if this form is consistent with

the data. First, we note that it guarantees that

the total number of cells, N ¼
R

¥

�¥dx~Cðx; tÞ, does
not change with time because

N ¼
R

¥

�¥dx~Cðx; tÞ ¼
R

¥

¥
dx 1

‘ðtÞF
x

‘ðtÞ

� �

¼
R

¥

�¥d�Fð�Þ;
(7)

and
R

¥

�¥d�Fð�Þ is a number that does not depend

on time (just like
R p

0
d�sinð�Þ is a number). Given

(Equation 6), the peak concentration Cð0; tÞ is

just Fð0Þ=‘ðtÞ, where Fð0Þ is again just a number.

With the scaling in (Equation 5) we deduce that

Cð0; tÞ~1=
ffiffi

t
p

. A replotting of the data in

Figure 2c on a log-log scale shows that this is

true (Figure 5a).

A significant prediction of the analysis leading

to (6) is that the data at different times should

collapse when plotted as Cðx; tÞ=Cð0; tÞ versus

x=‘ðtÞ, for this ratio is just Fð�Þ=Fð0Þ. (Dividing

Cðx; tÞ by Cð0; tÞ means that we rescale the

heights of the various curves; and dividing x by

‘ðtÞ means that we allow for expansion of the ini-

tial concentration of cells). If this holds, then it

implies that ‘ðtÞ is the only characteristic length

in the system. A test of this is shown in

Figure 5b, where we see a good collapse of the

data to a universal curve.

It is natural to seek a differential equation

that is consistent with the scaling x2 ~ t and

would provide a quantitative prediction of the

function F. First we consider if inertia is relevant

in this system. We know from fluid dynamics that

inertia is irrelevant when the Reynolds number

Re ¼ UL=n is much less than unity: U is the typi-

cal speed of a particle, L is the typical length of

a particle, and n is the kinematic viscosity (which

is defined as n ¼ h=�, where h is the fluid viscos-

ity and � is the fluid density). For Chlamydomo-

nas swimming in water (U ~ 10
�2 cm/s, L ~ 10�3

cm, and n ¼ 10
�2 cm2/s), we have Re ~ 10�3 and

inertia is indeed negligible.

The differential equation we seek will have

derivatives both in time and in space. In the

absence of inertia, we expect that the equation

for Cðx; tÞ should only involve first-order deriva-

tives in time (as second derivatives would imply

inertia and accelerations). With the scaling x2 ~ t

we expect two space derivatives for one time

derivative, so a consistent equation would be

qC

qt
¼D

q
2C

q
2x

; (8)

where the parameter D should be proportional

to the empirical D obtained from Figure 2b.

To find a solution of (Equation 8) in the form

of (Equation 6), we use D to construct a length

l ¼
ffiffiffiffiffi

Dt
p

and find (see Mathematical Details) the

normalized distribution

(a) (b)

Figure 5. Rescaling the data. (a) The peak amplitude, Cð0; tÞ, from Figure 2c plotted as a function time, t, on a

log-log scale; the dashed magenta line has a slope of �1=2, which shows that Cð0; tÞ~ t�1=2. (b) When the data in

Figure 2a are rescaled (see main text) and replotted, they collapse to a universal curve; the dashed magenta curve

is the function expð��2=2Þ.
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Cðx; tÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffi

4pDt
p exp � x2

4Dt

� �

: (9)

Given this distribution, we compute the vari-

ance as

hx2i ¼
Z

¥

�¥
x2Cðx; tÞ ¼ 2Dt: (10)

Comparing with our empirical observation

(Equation 5), we deduce D¼ 2D (the promised

factor of two!) and therefore that the dimension-

less function is Fð�Þ ¼ ð2pÞ�1=2
expð��2=2Þ. The

ratio Fð�Þ=Fð0Þ ¼ expð��2=2Þ is shown as the

dashed line in Figure 5b, in good agreement

with the data.

Taken together, the experimental observa-

tions in Figure 2 and the phenomenological

analysis above, confirmed in Figure 5, suggest

that the diffusion equation in (Equation 8) pro-

vides a sound description of the spreading of

cells that execute random motions. It indicates

that different organisms, with different diffusion

constants, obey the same fundamental scaling

laws, insensitive to the details of the underlying

random motions. Note that at this level of analy-

sis we do not have a microscopic interpretation

of the diffusion constant in terms of the fluid vis-

cosity and aspects of cell motility; it is simply a

phenomenological parameter that can be used

to characterize a given microorganism. On the

other hand, if we knew from microscopical

observations that an organism’s motion consists

of straight segments interrupted by random

reorientations, as in the case of Chlamydomonas

and indeed E. coli (Berg, 1993), then by dimen-

sional analysis (again) we could deduce

D ~D

2=t ~U2
t in terms of the run length D, speed

U, and time between turns t.

Discussion
I have presented two ways of interleaving data

and theory in a Results section as a way of indi-

cating how quantitative principles can be used

to derive new insight into phenomena. In one, a

microscopic model led directly to the diffusion

equation, whose structure led to the ‘rediscov-

ery’ of Fick’s law, which was confirmed from the

data. In the second, the principles of dimen-

sional analysis and some phenomenological rea-

soning led us to postulate a ‘new’ diffusion

equation as a concise encoding of the experi-

mental observations. Each of these approaches

used nothing more than basic algebraic manipu-

lations and elementary differential equations.

Returning to the referees who spoke of infer-

ences drawn directly from the data, I would ask:

“What language does the data speak?” The

answer would appear to depend on one’s back-

ground. The inferences I drew from Lamarr’s

data were based on experience with under-

standing continuum and nonequilibrium phe-

nomena, subjects which are less common in the

undergraduate physics curriculum than one

would hope, and very seldomly found in biology

curricula. So, I would indeed advocate a more

holistic education for both biologists and physi-

cists (Goldstein et al., 2005).

It might be argued that the particular exam-

ple I presented here is unusual, but in fact these

very same considerations (dimensional analysis,

scaling collapse of data, etc.) are to be found in

many other places in biophysics. Excellent exam-

ples are work on metabolic scaling laws

(West et al., 1997) and on stem cell replace-

ment dynamics (Lopez-Garcia et al., 2010).

More importantly, I am not trying to empha-

size any particular method in the physicist’s tool-

box, but rather a mindset that is about model-

building and testing as part of the results pre-

sented to the reader. This mindset is particularly

relevant when the theory is formulated first and

the experiment is undertaken to test it. But even

when the experiment comes first there may be a

need to use theory as a sanity check on one’s

observations (Meister, 2016). This also brings us

to the delicate issue of the extent to which

research should actually be ‘hypothesis driven’,

as discussed provocatively by Milner, 2018: I

will leave that Pandora’s box closed for the

moment.

Finally, one could argue that the diffusion

equation is ‘just a model’ or ‘just a theory’ and

should, therefore, not be considered as a Result

because, unlike the data, it could be shown to

be incorrect. With my experimentalist hat on, I

find that argument weak: almost every experi-

ment has potentially confounding aspects, and

despite our best efforts to control them, these

effects can produce spurious results. After all,

how many hundreds or thousands of papers

must have been written about stomach ulcers

before Marshall and Warren, 1984 discovered

that H. pylori was so often the culprit? So, while

it is certainly the case that many of the models

discussed in biology papers do not have the sta-

tus of fundamental laws, I think that it is contrary

to the scientific method to view the fact that

they may be superseded as a weakness. If theo-

ries are crafted the right way they have utility
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even if proven wrong, sometimes especially if

proven wrong!

This essay has touched on two tensions –

between theory and experiment, and between

the cultures of physics and biology. The differen-

ces between the cultures have implications not

only for how data is interpreted, but also for

what qualifies as “interesting” and who gets to

frame the questions: an enlightening debate on

this issue was aired more than 20 years ago by

Adrian Parsegian and Robert Austin (Parse-

gian, 1997; Huebner et al., 1997). For example,

it might be argued that biologists may not really

be interested in the fact that a new equation has

been derived that provides an approximate

description of a given system, and this could be

a reason not to publish a theoretical work in a

biology journal. The example I provide here

shows how this need not be an empty exercise,

but can lead to testable, mechanistic predictions

such as the relationship between flux and con-

centration gradient (Fick’s Law, rediscovered).

One need only consult the seminal work of

Turing (1952) on biological pattern formation or

of Hodgkin and Huxley (1952) on action poten-

tials to see the importance of having a mathe-

matical encoding of diffusion to study its

mechanistic implications. Likewise, a physics-ori-

ented experimental paper, even one that deals

with living organisms, may also not be seen as

interesting to biologists because the questions

appear unfamiliar. For truly interdisciplinary jour-

nals, easing this tension is perhaps the greatest

challenge.

Methods

Generating the data

Full disclosure – rather than do the experiments,

I numerically solved the Langevin equation

dx=dt ¼ hðtÞ for the time evolution of the posi-

tion xðtÞ for a single alga undergoing random

motion, where hðtÞ is a random variable with

zero mean and temporal correlation function

hhðtÞhðt0Þi ¼ 2Ddðt � t0Þ. In the results described

here, I set D ¼ 0:1 mm2/s, approximately that of

Chlamydomonas (Polin et al., 2009). The equa-

tion was integrated forward a time increment dt

from time index i to iþ 1 using the discrete

representation xiþ1 ¼ xi þ
ffiffiffiffiffiffiffiffiffiffi

2Ddt
p

hi, where hi is a

normally distributed random variable. The data

represent averages over 30,000 realizations.

Mathematical details

To obtain the normalized concentration profile

(Equation 9) we simply substitute the latter into

the diffusion (Equation 8), with � ¼ x=
ffiffiffiffiffi

Dt
p

. We

obtain

d2F

d�2
þ 1

2
Fþ�

dF

d�

� �

¼ 0: (11)

Integrating (Equation 11) once and imposing

the boundary condition that F! 0 as �!¥ we

obtain dF=d�þð1=2Þ�F ¼ 0, which integrates to

Fð�Þ ¼ Aexpð��2=4Þ: (12)

Normalizing the associated concentration

profile and re-expressing the result in terms of

the original variables yields the result

(Equation 9).
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