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Why whales are big but not bigger: Physiological
drivers and ecological limits in the age of
ocean giants
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The largest animals are marine filter feeders, but the underlying mechanism of their large size remains
unexplained. We measured feeding performance and prey quality to demonstrate how whale gigantism
is driven by the interplay of prey abundance and harvesting mechanisms that increase prey capture
rates and energy intake. The foraging efficiency of toothed whales that feed on single prey is constrained
by the abundance of large prey, whereas filter-feeding baleen whales seasonally exploit vast swarms
of small prey at high efficiencies. Given temporally and spatially aggregated prey, filter feeding provides
an evolutionary pathway to extremes in body size that are not available to lineages that must feed
on one prey at a time. Maximum size in filter feeders is likely constrained by prey availability across
space and time.

L
arge body size can improve metabolic
and locomotor efficiency. In the oceans,
extremely large body size evolved mul-
tiple times, especially among edentulous
filter feeders that exploit dense patches

of small-bodied prey (1, 2). All of these filter
feeders had smaller, toothed ancestors that
targeted much larger, single prey (3, 4). The
ocean has hosted the rise and fall of giant
tetrapods since the Triassic, but the largest
known animals persist in today’s oceans, com-
prising multiple cetacean lineages (5–8). The
evolution of specialized foraging mechanisms
that distinguish the two major whale clades—
biosonar-guided foraging on individual prey
in toothed whales (Odontoceti) and engulf-
ment filter feeding on prey aggregations in
baleen whales (Mysticeti)—likely led to the di-
versification of crown cetaceans during the
Oligocene (~33 to 23 million years ago). The
origin of these foraging mechanisms preceded
the recent evolution of the largest body sizes
(9, 10), and the diversification of these mech-
anisms across this body size spectrum was
likely enhanced by scale-dependent predator-
prey processes (11). It is hypothesized that
toothed whales evolved larger body sizes to
enhance diving capacity and exploit deep-

sea prey using more powerful biosonar (12),
whereas baleen whales evolved larger sizes
for more efficient exploitation of abundant,
but patchily distributed, small-bodied prey
(13). Cetacean foraging performance is con-
strained by diving physiology because ceta-
ceans must balance two spatially decoupled
resources: oxygen at the sea surface and higher-
quality food at depth (14). In both lineages, large
body size confers an ecological benefit that
arises from the scaling of fundamental physi-
ological processes; in some species, anatomical,
molecular, and biochemical adaptations fur-
ther enhance diving capacity (13). As animal
size increases, mass-specific oxygen storage is
constant yet mass-specific oxygen usage de-
creases (13). Therefore, larger air-breathers
should have greater diving capacity and thus
be capable of feeding for longer periods at a
given depth, leading to higher feeding rates
overall. In theory, this leads to relatively greater
dive-specific energy intakewith increasing body
size; and, with unlimited prey at the scale of
foraging grounds and seasons, larger divers
will also exhibit greater energetic efficiencies
(i.e., energy intake relative to energy use) while
foraging. We hypothesized that the energetic
efficiency of foraging will increase with body

size because larger animals will have greater
diving capacities and more opportunities to
feed more frequently per dive. Filter-feeding
baleen whales will exhibit relatively higher ef-
ficiencies compared with single-prey–feeding
toothedwhales, because they can exploit greater
biomass at lower trophic levels. This study uses
whale-borne tag data to provide a comparative
test of these fundamental predictions.
Our direct measures of foraging perform-

ance using multisensor tags (Fig. 1) show that
the largest odontocetes, such as sperm whales
(Physeter macrocephalus) and beaked whales
(Ziphiidae), exhibited high feeding rates dur-
ing long, deep dives (Fig. 2). By investing time
and energy in prolonged dives, these whales
accessed deeper habitats that contained less
mobile and potentially more abundant prey
(15), such as weakly muscularized, ammoni-
acal squid. Conversely, rorqual whales per-
formed fewer feeding events per dive despite
their large body size, because they invested
large amounts of energy to engulf larger vol-
umes of prey-laden water (16). The energetic
efficiency (EE, defined as the energy from cap-
tured prey divided by the expended energy,
including diving costs and postdive recovery)
is determined largely by the number of feed-
ing events per dive (Fig. 2) and the amount of
energy obtained during each feeding event
(Fig. 3). This amount of energy obtained per
feeding event was calculated from prey type
and size distributions historically found in
the stomachs of odontocetes (except for killer
whales, for which we used identified prey re-
mains from visually confirmed prey capture
events), as well as the acoustically measured
biomass, density, and distribution of krill at
rorqual foraging hotspots (17). Our results
show that although larger odontocetes appear
to feed on larger prey relative to the prey of
smaller, toothed whales, these prey were not
disproportionally larger (Fig. 3 and table S11),
and toothed whales did feed more frequently
on this smaller prey type. Thus, the energy
obtained from prey in a dive did not outweigh
the increased costs associatedwith larger body
size and deeper dives (fig. S2), thereby causing
a decrease in EE with increasing body size in
odontocetes (Fig. 4). In contrast, themeasured
distribution and density of krill biomass sug-
gests that larger rorquals are not prey-limited
at the scale of individual dives. Because larger
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Fig. 1. Whale tag data quan-
tifies foraging performance.
(A) Blue whale suction-cup
tagging using a rigid-hulled
inflatable boat and a carbon
fiber pole (upper left). Tag
data from a blue whale
showing 12 consecutive
foraging dives and the number
of lunge-feeding events per
dive (left). Inset (right) shows
the kinematic signatures
used to detect lunge-feeding
events (with an increase in
speed and upward movement
before lunging) and simulta-
neous video frames that
directly confirm engulfment
[images 1 to 4: 1, prior to
mouth opening; 2, maximum
gape (shown by arrow); 3,
maximum extension of the
ventral groove blubber (shown
by arrow); and 4, after mouth
closure during the filter
phase]. (Bottom) Example of
time-synchronized dive profile
and the estimated biomass as
a function of depth (17), grid
lines are 147 m by 40 m. Prey
mapping data were used to
estimate the distribution of
krill densities targeted by
tagged whales. (B) Sperm
whale suction-cup tagging
(upper left) and six foraging
dives with feeding events
(thicker lines denote
echolocation activity). Middle
right panels show the acoustic
interclick interval (ICI) and
kinematic signatures (jerk, or
rate of acceleration) used to
infer feeding events at depth.
The photograph on the bottom
left shows examples of
cephalopod beaks (single large
beak, Mesonychoteuthis
hamiltoni; many small beaks,
Gonatus fabricii) found in the
stomachs of sperm whales
(lower left) that were used to
estimate the size distributions
of captured prey (sperm
whale tooth and 10 cm line are
also shown for scale, photo
by Per Henriksen). Illustrations
by Alex Boersma.
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rorquals have relatively larger engulfment ca-
pacities (16), rorquals exhibited much more
rapid increases in energy captured from prey
with increasing body size (Fig. 3). If they can
detect and exploit the densest parts of an
individual krill patch, as evidenced by their
ability tomaneuvermore and increase feeding
rates per dive when krill density is higher (14),
thenEE should increasewith body size (Fig. 4).
These results were robust to assumptions about
trait similarity from shared ancestry as well as
the scaling of metabolic rate (MR), which we
simulatedover awide rangeas (MRºMc0.45:0.75,
where Mc is cetacean body mass).
The divergence in energetic scaling between

rorquals and odontocetes that results from
available prey has major implications for un-
derstanding the ecology and evolution of
gigantism in marine ecosystems. For toothed
whales, increasing body size leads to hyper-
allometric investment in biosonar structures
that increase prey detection range (12). The
largest living toothed whales today, sperm
whales and beaked whales, independently
evolved large body size to push their physio-
logical limits for dive duration to spend more
time feeding in the deep sea. Themesopelagic
and bathypelagic realms are not only among
the largest ecosystems on the planet, they also
provide less competitive niches with fewer
endothermic predators, providing opportunities

to capture high-value prey (18). Although sperm
whales foraging on giant squids (Architeuthidae)
persists as an iconic motif, giant squid beaks
are rare in sperm whale stomachs at a global
scale (19). However, sperm whale biosonar,
owing to a hypertrophied nasal complex, is
more powerful than beaked whale biosonar
by approximately two orders of magnitude
(12). This allows sperm whales to scan larger
volumes of water and, in some regions, to
find and chase very large prey. Sperm whales
have higher attack speeds and reduced feed-
ing rates per dive when foraging on giant squid
(20), which contrasts with how sperm whales
feed with slower speeds and higher feeding
rates on smaller squid in other regions (21).
This discrepancy suggests that larger prey will
incur greater foraging costs, which partially
offset the increased energetic gain. Smaller
prey are usually more abundant than larger
prey (22), so efforts to optimize foraging effi-
ciency require the ability to detect the distribu-
tion of prey size, which favors the evolution of
powerful sonar. Both beaked whales andmany
spermwhales in our studymay have adopted a
less risky strategy by targeting more reliable
patches of cephalopods often at depths greater
than 1000m, thereby yielding up to 50 feeding
events per dive (Fig. 2). Nevertheless, the abil-
ity of sperm whales to forage on the largest
squid, when available, highlights an advan-

tage of their large size compared with beaked
whales, which feed on smaller prey. Regard-
less of whether odontocetes target a few large
prey ormany small prey in individual dives, the
energy gained from these deep-sea resources is
ultimately constrained by the total amount of
prey biomass that can be captured during a
breath-hold dive. Therefore, prey availability
is a key ecological factor that constrains body
size and population density in these lineages.
By contrast, gigantism in mysticetes is ad-

vantageous because they exhibit positive allom-
etry in filter-feeding adaptations that enable
bulk consumption of dense prey patches (16).
For the largest rorquals, each lunge captured
a patch of krill with an integrated biomass and
energetic content that exceeded, on average,
those of the largest toothed whale prey by at
least one order of magnitude (Fig. 3). This abil-
ity to process large volumes of prey-ladenwater,
calculated as 100 to 160% of the whale’s own
body volume in the largest rorquals, underlies
the high energetic efficiency of foraging, even
when accounting for differences in body size
(fig. S1). During lunge feeding, water and prey
are engulfed in a matter of seconds and at
speeds several times those of steady swimming
(16). However, whales in a separate mysticete
clade (Balaenidae), represented by bowhead
whales (Balaenamysticetus) and rightwhales
(Eubalaena spp.), do not feed in discrete events
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Fig. 2. Number of feeding events per foraging dive. Beaked whales (Ziphiidae) and some sperm whales (P. macrocephalus) exhibit high feeding rates during long,
deep dives, whereas rorquals and delphinids feed less frequently during shorter, shallower dives. Balaenids were excluded from this analysis because they are
continuous-ram filter feeders and do not exhibit discrete feeding events like rorquals and odontocetes.
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but rather continuously ram prey-laden water
through their baleen for up to several minutes
at a time (23). The speed-dependent drag asso-
ciated with continuous-ram filtration neces-
sitates slow swimming speeds to minimize
energy expenditure (23). This strategy may
be optimized for foraging on smaller copepods
that form less dense patches, thereby resulting
in lower energetic efficiencies relative to sim-
ilarly sized rorquals (Fig. 4). The high-speed
dynamics of rorqual lunge feeding also gener-
ate high drag (16), but the rapid engulfment of
dense krill patches yields higher efficiencies.
Both continuous-ram filter-feeding and lunge-
feeding mysticetes appeared to have indepen-
dently evolved gigantism (>12 m body length)
during an era of intensified wind-driven up-
welling and glacial cycles, processes that char-
acterize productive whale foraging hotspots in
the modern oceans (9). Coastal upwelling in-
tensity increases the number and density of
aggregations of the relatively small-bodied

forage species (24) that make filter feeding
energetically efficient (14). Our analyses point
to filter feeding as a mechanism that explains
the evolutionary pathway to gigantism because
it enabled the high-efficiency exploitation of
large, dense patches of prey.
The largest comparable vertebrates, sauropod

dinosaurs, reached theirmaximum size on land
about midway through their 140-million-year
history, and their evolutionary patterns show
no real limits to extreme size (25). If sauro-
pod size was not limited by physical factors,
such as gravity, hemodynamics, and bone
mechanics (26), then it may have been ulti-
mately constrained by energetics and food
availability (27) rather than by an ability to
access available food. In the marine environ-
ment, the combination of filter feeding and
greater abundance of food likely facilitated the
evolution of not only gigantic filter-feeding
whales, but also that of several independent
lineages of large filter-feeding elasmobranchs

(3, 6). Both filter-feeding sharks and meso-
thermic single-prey–feeding sharks exhibit
greater body size compared with single-prey–
feeding ectothermic sharks (3), suggesting par-
allel evolutionary trajectories with cetaceans
in terms of gigantism and morphological ad-
aptations that increase foraging capacity and
net energy intake (4). The largest filter-feeding
sharks are larger than mesothermic raptorial-
feeding sharks, which may reflect either a lack
of large prey as a limiting factor in today’s oceans
or an additional temperature-dependent meta-
bolic constraint. Similarly, the larger size of
baleen whales compared with filter-feeding
sharks suggests an overall advantage for ani-
mals that exhibit both endothermy and filter-
feeding adaptations, particularly in cold,
productive habitats. The combination of high
metabolic rates and the ability to short-circuit
the food web with filter-feeding adaptations
may have enabled high-efficiency exploitation
of low trophic levels (28), thereby facilitating
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whales during each feeding event. Estimates for prey energy (prey mass
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engulfment event. Symbol size indicates the relative frequency of occurrence
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data reflects the distribution of prey data for each species. This data was
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denotes isometry, indicating that larger toothed whales capture disproportionally
less energy from prey (y = 2.81x0.74, where y represents energy intake and
x represents cetacean body mass), whereas larger rorquals capture disproportionally

larger prey energy, with increasing body size (y = 0.000309x1.93). Generalized least
squares regressions are shown with 95% confidence intervals (CI) (gray bands;
see also table S11). The phylogenetic tree inset (with arbitrary branch lengths) shows
evolutionary relationships (32) among species [(i) harbor porpoise, Phocoena
phocoena; (ii) Risso’s dolphin, Grampus griseus; (iii) Blainville’s beaked whale,
Mesoplodon densirostris; (iv) pilot whales, Globicephala spp.; (v) Cuvier’s beaked
whale, Ziphius cavirostris; (vi) killer whale, Orcinus orca; (vii) Baird’s beaked whale,
Berardius bairdii; (viii) sperm whale, P. macrocephalus; (ix) Antarctic minke whale,
Balaenoptera bonaerensis; (x) humpback whale, Megaptera novaeangliae; (xi) fin
whale, Balaenoptera physalus; (xii) blue whale, Balaenoptera musculus]. Balaenids
were excluded from this analysis because they are continuous-ram filter feeders
and do not exhibit discrete feeding events like rorquals and odontocetes.
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the evolution of large body size in multiple
lineages.
We have shown that cetacean gigantism

is driven by the hyperallometry of structures
that increase prey capture rates and energy
intake in clades with divergent feedingmech-
anisms, despite the potential constraints to
size. However, to maintain a high energetic
efficiency at larger sizes, cetaceans must ex-
ploit either large individual prey or dense
patches of small prey. Although the lack of
large prey and the increasing costs of captur-
ing such prey limits energetic efficiency of the
largest toothed whales, our analyses suggest
that large rorquals are not limited by the size
and density of krill patches at the productive
apex of their foraging seasons. How long
these dense krill patches are available during
the summer feeding season at higher latitudes,
or throughout the rest of the year (29), may
ultimately determine the amount of lipid re-
serves that can be used to fuel ocean basin–
scale migrations as well as reproductive output
at lower latitudes (30, 31). The size of the largest
animals does not seem to be limited by phys-
iology (5), but rather is limited by prey avail-

ability and the rate at which that prey can be
exploited using the foragingmechanisms these
whales have evolved.
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Why whales are big but not bigger: Physiological drivers and ecological limits in
the age of ocean giants
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It's the prey that matters
Although many people think of dinosaurs as being the largest creatures to have lived on Earth, the true largest known
animal is still here today—the blue whale. How whales were able to become so large has long been of interest.
Goldbogen et al. used field-collected data on feeding and diving events across different types of whales to calculate
rates of energy gain (see the Perspective by Williams). They found that increased body size facilitates increased prey
capture. Furthermore, body-size increase in the marine environment appears to be limited only by prey availability.
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