ON BIMOLECULAR LAYERS OF LIPOIDS ON THE CHROMOCYTES OF THE BLOOD.

BY E. GORTER, M.D., AND F. GRENDEN.

(From the Laboratory of Pediatrics of the University of Leiden, Leiden, Holland.)

(Received for publication, December 15, 1924.)

We propose to demonstrate in this paper that the chromocytes of different animals are covered by a layer of lipoids just two molecules thick. If chromocytes are taken from an artery or vein, and are separated from the plasma by several washings with saline solution, and after that extracted with pure acetone in large amounts, one obtains a quantity of lipoids that is exactly sufficient to cover the total surface of the chromocytes in a layer that is two molecules thick. Subsequent extractions with ether or benzene yield only small traces of lipoid substances.

We therefore suppose that every chromocyte is surrounded by a layer of lipoids, of which the polar groups are directed to the inside and to the outside, in much the same way as Bragg (1) supposes the molecules to be orientated in a "crystal" of a fatty acid, and as the molecules of a soap bubble are according to Perrin (2). On the boundary of two phases, one being the watery solution of hemoglobin, and the other the plasma, such an orientation seems a priori to be the most probable one. Any other explanation that does not take account of this constant relation between the surface of the chromocytes and the content of lipoids seems very difficult to sustain.

Technique.

1. All the glassware (centrifuge tubes, pipettes, funnels, filters, beakers, extraction apparatus) were made fat-free by concentrated sulfuric acid to which potassium dichromate had been added.

2. The reagents (water, benzene, acetone, ether, etc.) were twice distilled in an all glass distillation apparatus. The salt was ignited before use in a quartz crucible.

3. The blood was taken directly from an artery or a vein. The vessel was laid free and a needle twice boiled in doubly distilled water to which first 1 per cent
soda, and then 0.5 per cent potassium oxalate had been added, was introduced into it. The first stream of blood was discarded to avoid the possibility of error from contamination with the fat of the subcutaneous tissue. The next portion was then permitted to flow into a small stoppered weighing bottle, containing 0.5 per cent potassium oxalate. In the case of the goat and the sheep the jugular vein was directly punctured through the skin but in this case the stream of blood was permitted to flow for some time, so as to wash the needle clean of all contaminating fatty substances before a measured quantity was received in our glass vessel. In human subjects the same procedure of puncturing the vein through the skin was followed.

4. After mixing, 10 cc. (or in later experiments 1 cc.) of blood were pipetted into a centrifuge tube of 60 cc. and three or four times washed with 50 cc. salt solution (0.9 per cent) in the usual way.

5. The extraction was performed with acetone during 48 or 72 hours. Large quantities were used.

After several extractions, the acetone was filtered into a glass beaker and the liquid evaporated on a water bath. This procedure was the most difficult part of the operation because loss was very liable to occur at this time. The residue was finally taken up in benzene and filtered into a measuring flask of 50 cc., when 10 cc. of the blood had been used, or in a tube marked at 2.5 or 5 cc., when 0.5 or 1 cc. had been taken. Just before each determination the liquid was made up to the mark with benzene.

Determination of the Surface Occupied by the Lipoids Spread Out in a Monomolecular Layer on Water.

Langmuir (3) has demonstrated that fats and fatty acids spread in a monomolecular layer when they have been dissolved in benzene and a few drops of the solution are placed on a large surface of water. Adam (4) has slightly modified the apparatus originally described by Langmuir. We have made use of Adam's modification. The benzene solution was delivered out of a calibrated 0.1 cc. pipette.

Now, it has been shown that the molecules of a fatty substance spreading on a water surface do not exert any pressure in a direction parallel to the surface before the condition is arrived at that they form precisely a monomolecular film, in which latter they come to be arranged in a vertical position. In the Langmuir-Adam apparatus the water surface chosen is so large that sufficient room is provided to the molecules so that they are not in close contact with each other. By the displacement of a strip of copper on which a balance is mounted one is able to determine the precise moment at which the molecules
begin to exert a pressure in a horizontal plane, and by placing different weights on the pan of the balance, it is possible to compensate and to measure this pressure. The reduction of the size of the surface is obtained by moving a glass strip covered with a thin layer of paraffin oil over the edges of the copper tray, which are covered as well with paraffin oil. As soon as the molecules are in close contact in a layer exactly one molecule thick, the balance moves out of the equilibrium position. By placing small weights on the balance one is able to compress the layer without much further reduction of the size of the surface, till suddenly by increasing the weight the layer is disturbed and equilibrium of the balance is no longer obtained. The dimensions of the surface are measured with a ruler.

We always began with the determination of the surface contamination. By placing 50 mg. in the pan of the balance and moving the glass strip from a distance of about 30 cm. we were able to determine that it hardly ever exceeded 0.5 cm. at room temperature.

From a pipette 0.1 cc. of the benzene solution of the lipoids of the chromocytes was blown onto the surface of the water in the tray and by moving the glass strip the point was noted at which the balance began to move, 50 mg. being the weight in the pan. The pressure exerted on each cm. of the layer was 2 dynes per 50 mg. weight in the pan.

Determination of the Number and the Dimensions of the Chromocytes.

The number of chromocytes was determined by filling the mélangeur as soon as possible from the weighing bottle containing the blood, and by counting in the counting chamber of Bürker the cells in 80 small squares, each measuring 1/4,000 c.mm. The surface of the chromocytes was evaluated from blood smears on slides, coloured by Pappenheim's panoptical dye. With the aid of a drawing prism of Zeiss 40 to 50 chromocytes were drawn on millimeter paper. By taking account of the magnifying power of the microscope one was able to measure the dimensions of the cells in a horizontal and a vertical direction.

The surface of the cells was derived from these numbers by making use of Knoll's (5) formula that in chromocytes having the form of a disc (a form that is taken by all chromocytes that are spread on glass) the surface is $2D^2(D$ being the diameter).

The total surface of the chromocytes from 1 to 10 cc. blood was easily obtained by multiplying the number of cells by their surface.
We have examined the blood of man and of the rabbit, dog, guinea pig, sheep, and goat. There exists a great difference in the size of the red blood cells of these animals, but the total surfaces of the chromocytes from 0.1 cc. blood do not show a similarly great divergence, because animals having very small cells (goat and sheep) have much greater quantities of these cells in their blood than animals with blood cells of larger dimensions (dog and rabbit).
We give all the results of our experiments, omitting only those in which we were unable to avoid losses in the procedure of evaporation of the acetone.

It is clear that all our results fit in well with the supposition that the chromocytes are covered by a layer of fatty substances that is two molecules thick.

BIBLIOGRAPHY.