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This exercise was generated from a Jupyter notebook. You can download the notebook here
(diffusion_via_coin_flips_continued.ipynb).

Objective

In this tutorial, we will computationally simulate the process of diffusion with "coin flips," where at
each time step, the particle can either move to the left or the right, each with probability . From
here, we can see how the distance a diffusing particle travels scale with time.

Modeling 1-D diffusion with coin flips

Diffusion can be understood as random motion in space caused by thermal fluctuations in the
environment. In the cytoplasm of the cell different molecules undergo a 3-dimensional diffusive
motion. On the other hand, diffusion on the cell membrane is chiefly 2-dimensional. Here we will
consider a 1-dimensional diffusion motion to make the treatment simpler, but the ideas can be
extended into higher dimensions.

# Import modules
import numpy as np
import matplotlib.pyplot as plt 

# Show figures in the notebook
%matplotlib inline 

# For pretty plots
import seaborn as sns
rc={'lines.linewidth': 2, 'axes.labelsize': 14, 'axes.titlesize': 14, \ 
   'xtick.labelsize' : 14, 'ytick.labelsize' : 14}
sns.set(rc=rc) 

import scipy.stats as stats

To simulate the flipping of a coin, we will make use of numpy's random.uniform() function that
produces a random number between  and . Let's see it in action by printing a few random
numbers:
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for i in range(10): 
   print(np.random.uniform())

We can now use these randomly generated numbers to simulate the process of a diffusing particle
moving in one dimension, where any value below  corresponds to step to the left and any value
above  corresponds to a step to the right. Below, we keep track of the position of a particle for 

 steps, where each position is  or  from the previous position, as determined by the
result of a coin flip.
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0.311810356524755 
0.5089003563077501 
0.29681371354447683 
0.9442873860521601 
0.0613220426031571 
0.6923826236130496 
0.05116772056527752 
0.4189257062250654 
0.5010688665552434 
0.10483834668660841 



# Number of steps
n_steps = 1000 

# Array to store walker positions
positions = np.empty(n_steps) 

# Initialize the walker's position
positions[0] = 0 

# simulate the particle moving and store the new position
for i in range(1, n_steps): 
    
   # generate random number  
   rand = np.random.uniform() 
    
   # step in the positive direction  
   if rand > 0.5: 
       positions[i] = positions[i-1] + 1 
        
   # step in the negative direction  
   else: 
       positions[i] = positions[i-1] - 1 
        
# Show the trajectory
plt.plot(positions)
plt.xlabel('steps')
plt.ylabel('position');



As we can see, the position of the particle moves about the origin in an undirected fashion as a
result of the randomness of the steps taken. However, it's hard to conclude anything from this
single trace. Only by simulating many of these trajectories can we begin to conclude some of the
scaling properties of diffusing particles.

Average behavior of diffusing particles

Now let's generate multiple random trajectories and see their collective behavior. To do that, we will
create a 2-dimensional numpy array where each row will be a different trajectory. 2D arrays can be
sliced such that [i,:] refers to all the values in the ith row, and [:,j] refers to all the values in jth
column.

# Number of trajectories
n_traj = 1000 

# 2d array for storing the trajectories
positions_2D = np.empty([n_traj, n_steps]) 

# Initialize the position of all the walkers to 0
positions_2D[:,0] = 0 

# first iterate through the trajectories
for i in range(n_traj): 
    
   # then iterate through the steps 
   for j in range(1, n_steps): 
        
       # generate random number  
       rand = np.random.uniform() 

       # step in the positive direction  
       if rand > 0.5: 
           positions_2D[i, j] = positions_2D[i, j-1] + 1 

       # step in the negative direction  
       else: 
           positions_2D[i, j] = positions_2D[i, j-1] - 1

Now let's plot the results, once again by looping.



# iterate through each trajectory and plot
for i in range(n_traj): 
   plt.plot(positions_2D[i,:]) 
    
# label
plt.xlabel('steps')
plt.ylabel('position');

The overall tendency is that the average displacement from the origin increases with the number of
time steps. Because each trajectory is assigned a solid color and all trajectories are overlaid on top
of each other, it's hard to see the distribution of the walker position at a given number of times
steps. To get a better intuition about the distribution of the walker's position at different steps, we
will assign the same color to each trajectory and add transparency to each of them so that the
more densely populated regions have a darker color.



# iterate through each trajectory and plot
for i in range(n_traj): 
   # lower alpha corresponds to lighter line  
   plt.plot(positions_2D[i,:], alpha=0.01, color='k') 
    
# array for storing average position
avgs = np.empty(n_steps) 

# loop through time to get average position
for j in range(n_steps): 
   avgs[j] = np.mean(positions_2D[:,j]) 

# plot average position on top and label
plt.plot(avgs, color='r')
plt.xlabel('steps')
plt.ylabel('position');

As we can see, over the course of diffusion the distribution of the walker's position becomes wider
but remains centered around the origin, indicative of the unbiased nature of the random walk. To
see how the walkers are distributed at this last time point, let's make a histogram of the walker's
final positions.



# make a histogram of final positions
_ = plt.hist(positions_2D[:,-1], bins=20)
plt.xlabel('final position')
plt.ylabel('frequency');

As expected, the distribution is centered around the origin and has a Gaussian-like shape. The more
trajectories we sample, the "more Gaussian" the distribution will become. However, we may notice
that the distribution appears to change depending on the number of bins we choose. This is known
as bin bias and doesn't reflect anything about our data itself, just how we choose to represent it. An
alternative (and arguably better) way to present the data is as a empirical cumulative distribution
function (or ECDF), where we don't specify a number of bins, but instead plot each data point. For
our cumulative frequency distribution, the -axis corresponds to the final position of a particle and
the -axis corresponds to the proportion of particles that ended at this position or a more negative
position.
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# sort the final positions 
sorted_positons = np.sort(positions_2D[:,n_steps-1])
# make the corresponding y_values (i.e. percentiles)
y_values = np.linspace(start=0, stop=1, num=len(sorted_positons)) 

# plot the cumulative histogram
plt.plot(sorted_positons, y_values, '.')
plt.xlabel("final position")
plt.ylabel("cumulative frequency");

This way of visualizing the data makes it easier to tell that distribution of walkers is in fact
symmetric around 0. That is, 50% of the walkers ended on a negative position, while 50% of the
walkers ended on a positive position.

Comparing to the binomial distribution

Returning to our histogram of the final particle positions, we've discussed that it should be
binomially distributed, but it would be nice to verify this in some way. To do this, we can plot the
known binomial distribution on top of our histograms, by calling the stats.binom.pmf(k, n, p)
function. This function returns the probability of getting  heads, from  coin flips, given probability
 of getting heads. We've seen that our diffusing particles ultimately take on some final position on

the interval . To understand the probability of this occurring, we need to convert these
positions to the number of "heads" (or the number of right steps taken). In this case, the number
of heads corresponds to the interval . That is, if you got  heads (and thus  tails),
you've traveled  mores steps to the left than to the right and ultimately ended up at position 

. By the converse argument, if you got  heads, you end up at position . Let's use 
stats.binom.pmf() to determine the chance of getting these number of heads for the total number
of time steps ( ) we computed and plot the results over this range .

k n

p

[−100, 100]

[450, 550] 450 550
100

−100 550 100

1000 [450, 550]



# make a histogram of final positions, hardcoding bin positions
_ = plt.hist(positions_2D[:,-1], bins=range(-100,100,2)) 

# final positions occur on the interval [-100, 100]
final_positions = np.linspace(-100,100,101) 

# number of heads corresponding to the final_position
# should be interval [450, 500]
n_heads = (n_steps + final_positions)/2 

# use binomial distribution to determine prob of n_heads from taking n_steps
# scaled by the number of trajectories for overlaying on our histogram
binomial_pmf = stats.binom.pmf(n_heads, n_steps, p=0.5)*n_traj 

# plot and label
plt.plot(final_positions,binomial_pmf,'.')
plt.xlabel('final position')
plt.ylabel('frequency');

These seem to overlap pretty well, and it seems as though our final particle positions are in fact
binomially distributed. To see this even more explicitly, we can plot the CDF for the binomial
distribution over our ECDF. This is done by simply using stats.binom.cdf() instead of 
stats.binom.pmf().



# sort the final positions 
sorted_positons = np.sort(positions_2D[:,n_steps-1])
# make the corresponding y_values (i.e. percentiles)
y_values = np.linspace(start=0, stop=1, num=len(sorted_positons)) 

# binomial cdf
binomial_cdf = stats.binom.cdf(n_heads, n_steps, p=0.5) 

# plot the cumulative histogram
plt.plot(sorted_positons, y_values, '.')
plt.plot(final_positions,binomial_cdf)  
plt.xlabel("final position")
plt.ylabel("cumulative frequency");

Mean squared displacement (MSD)

From visual inspection we could tell that the particles tend to go further away from the origin as the
number of steps increases. To get a more quantitative understanding of the particles' positions, we
can compute something known as the mean squared displacement or MSD. This serves as a metric
of how far the particles have traveled from the origin that is invariant to the direction the particle
moved. Let's plot the how the mean squared displacement scales with the number of steps.



# array for storing the MSD
MSDs = np.empty(n_steps) 

# calculate the MSDs for each step
for j in range(n_steps): 
   MSDs[j] = np.mean(positions_2D[:,j]**2) 
    
# Plot the MSD
plt.plot(MSDs)
plt.xlabel('steps')
plt.ylabel('mean squared displacement');

We see that the mean squared displacement clearly increases linearly with the number of steps.
This leads to the important result that for diffusion, the time it takes to reach a certain distance
scales with the square of that distance. This means that by diffusion, it will take 4 times as long to
travel twice the distance. This is in contrast to ballistic motion (like a car driving on a freeway),
where the time to travel scales linearly with the distance.

This result leads us to the relationship that the time  it takes to diffuses scales with , where  is
the length and  is the diffusion coefficient. Let's explore this relationship by plotting  vs.  for
length scales relevant to biology, like  µm (i.e. an E. coli) to  m (i.e. the longest neuron in the
human body). We will do this for , which is typical for a protein in cytoplasm.
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# diffusion constant 
D = 10 # µm^2/sec 

# range of lengths in microns from 10^0 to 10^6
L = np.logspace(0, 6, 100) 

# calculate time to diffuse
t = L**2 / D # sec 

# and plot
plt.plot(L, t)
plt.xlabel('length (µm)')
plt.ylabel('time (sec)');

From this, we see we recapitulate what we calculated yesterday, where it takes  seconds, or 
 years for a protein to diffuse the length of a meter! However, the way we've plotted this

makes it hard to tell what's going on at small length scales, so let's instead plot the data on a log-
log plot.
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# Make a log-log plot of the diffusion timescale
plt.loglog(L, t)
plt.xlabel('length (µm)')
plt.ylabel('time (sec)');

From here, we can better see that for short length scales of  µm, the time to diffuse is quite fast,
less than a second. As we go to length scales of hundreds of microns, the diffusion times become
on the order of minutes to an hour. This provides an argument for why bacteria use diffusion as a
means of transport within the cell, while eukaryotic cells rely on directed transport via motor
proteins to shuttle materials around the cell.
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