
BE/APh161: Physical Biology of the Cell
Homework 5

Due Date: Wednesday, February 14, 2024

“Thinking, analyzing, inventing are not anomalous acts; they are the normal
respiration of the intelligence.” - Jorge Luis Borges

1. Setting up the fly body plan.

One of the most important ideas for how positional information arises in
multicellular organisms is the idea of a morphogen gradient (another serious
contender is a Turing pattern). In this problem we will use a steady-state
solution to the reaction-diffusion equation for Bicoid to understand how the
exponential profile shown in Figure 1 is set up. Stated simply, the develop-
ment of the Bicoid gradient can be thought of as resulting from a competition
between the diffusion of Bicoid protein that is synthesized at the anterior end
of the embryo (the mother deposits localized bcd mRNA there as shown in
Figure 2) and the degradation of this protein while it is diffusing around.

(A) Give a brief description (a paragraph or less) of the Bicoid gradient in
Drosophila and how it is relevant to fly development. Further, to get a feeling
for the Bicoid gradient, redraw the Bicoid profile shown in Figure 1 in terms
of the absolute number of Bicoid proteins per nucleus. You can make the
drawing by hand or plot some approximate curve using Python. To make
this estimate, you will need to use the information about nuclear sizes in nu-
clear cycle 14 provided in Figure 4C of Gregor2007a (provided on the course
website).

(B) Make a derivation of the reaction-diffusion equation and use it to justify
the form

∂Bcd(x, t)

∂t
= D

∂2Bcd(x, t)

∂x2
− Bcd(x, t)

τ
. (1)

Make sure you explain carefully where all of these terms come from. To
do so, begin the usual way by considering a one-dimensional concentration
profile and by finding the rate of change of number of Bicoid molecules in
the box at position x by considering the flux into (Jm(x − ∆x/2)) and out
of ((Jm(x+ ∆x/2)) the box using arguments like those made in class. How-
ever, you need to generalize that treatment by accounting for the fact that
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Figure 1: The Bicoid morphogen. The Bicoid activator is distributed in an
exponential gradient. (Adapted from F. Liu et al., Proc Natl Acad Sci USA
110:6724 2013.)
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Figure 2: bicoid mRNA distribution. Using single molecule mRNA FISH,
the localization of individual bicoid mRNA molecules at the anterior end of
the embryo can be revealed. (Adapted from Petkova et al. (2014), Current
Biology 24:1283.)
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a Bicoid molecule has the probability r∆t of degrading in time interval ∆t,
where r ≈ 1/τ , where τ is the degradation time.

(C) Now solve this equation in steady-state by finding the general solution
subject to the boundary condition that J(0, t) = j0 and J(L, t) = 0. Make
sure you explain what these boundary conditions mean relative to the biology
of the problem. Suggest approximations that can be made to simplify the
result, specifically, can you exploit the fact that the embryo is much larger
than the decay length to simplify the solution?

(D) Describe the observed concentration profile of Bicoid along the anterior-
posterior axis of the fly mathematically. What is the functional form? Exper-
imentally, Thomas Gregor has found that the Bcd profile is an exponential
of the form Bcd(x) = Bcd0e

−x/λ where x is the position along the embryo,
Bcd0 is the Bicoid concentration at x = 0 and λ is the decay constant of the
gradient. Does that experimental profile jibe with your solution?

(E) The paper by Drocco et al. uses a photoactivatable fluorescent protein
to measure the lifetime of the Bicoid protein. Read the paper (available on
the course website) and explain the technique in one paragraph. You might
find it useful to draw a schematic plot such as shown in Figure 1f of the paper.

(F) What is the value of the decay constant λ for the gradient shown in
Figure 1? To estimate this magnitude, you can just fit “by eye” by plotting
your solution for different values of Bcd0 and λ. Now, compare the measured
λ value with that you can predict by plugging in realistic values of D, τ into
your solution. To make this possible, read the papers by Abu-Arish et al.
and Drocco et al., provided on the course website.

(G) One of the most important and interesting ideas to come out of the idea
of positional information contained in morphogen gradients was the so-called
French flag model which we will explore here. This model posits that the
Bicoid concentration dictates the position of the cephalic furrow. As seen in
Figure 3, the idea of the model is that boundaries in the embryo are deter-
mined by threshold values of the morphogen. The idea of the model is that
if the gene dosage gets changed, as seen in the mutant profile, the bound-
ary will still occur at the same value of the morphogen. That hypothesis is
enough to determine the shift in boundary position with gene dosage.
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To test this model, we will analyze several experiments (Nusslein-Vohlhard
and Driever and Liu et al.) where they measured cephalic furrow position as
a function of different dosages of the bicoid gene in embryos. As seen above,
an exponential gradient of Bicoid is described by

Bcd(x, λ, α,Bcd0) = Bcd0 α e
−x/λ, (2)

where x is the position along the embryo, Bcd0 is the Bicoid concentration at
x = 0, λ is the decay constant of the gradient and α is the Bicoid dosage, with
α = 1 corresponding to the wild-type. Work out a model for the position of
the cephalic furrow xnew as a function of the gene dosage α, the morphogen
gradient decay length λ and the position of the wild-type cephalic furrow,
xCF .

(H) Note that, given a measured xCF ≈ 32% of the embryo length, your
model has no free parameters. Compare the prediction from your model
with the data for xnew vs. α obtained by Nusslein-Vohlhard, and by Driever
and Liu et al.. Comment on how well your prediction matches the data that
is provided with the homework. What could be going on?

2. Diffusive speed limits: It’s not just a good idea, it’s the law

In order for a chemical reaction to take place, the reactants must be at
the same place at the same time. A very interesting calculation explores the
way in which diffusion can control the on rate for reactions. Imagine some
reaction in which A and B come together to form the complex AB. To sim-
plify the problem, we are going to imagine B as a sphere of radius a that is
fixed at the origin of our coordinate system. Further, we are going to imagine
that very far away the concentration of A is held at c0. What I really mean
by this is that limr→∞c(r) = c0, where c(r) is the concentration of reactant
A as a function of distance from the origin. Our goal is to compute the
so-called “diffusion-limited on rate” for the reaction. We begin by working
out the steady-state solution to the diffusion equation with the boundary
condition that c(a) = 0, which corresponds to the physical statement that
the sphere is a “perfect absorber”. What this really means is that every time
a molecule of A arrives at the sphere, the reaction occurs. (Note that this
tells us that the diffusion-limited on rate is the fastest that a reaction could
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Figure 3: Concept of the French flag model. The green profile shows the
wild-type morphogen concentration and the purple profile shows that of a
mutant with half the wild-type gene dosage.
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occur. It could be true that after the molecule arrives, it has to wait for some
favorable orientation to occur, for example, which would make the rate of
the reaction even slower).

(a) Solve the diffusion equation

∂c(r, t)

∂t
= D∇2c(r, t) (3)

in steady state and find the concentration profile c(r) as a function of c0 and
a. Explain why we can write the concentration only as a function of the
scalar r as opposed to the vector r.

(b) Use that result to compute the diffusive flux J(a) at the surface of the
sphere. Here you need to invoke Fick’s law relating flux and concentration,
but acknowledging that you are working in spherical coordinates.

(c) Use the result of part (b) to write an equation for dn/dt, the rate at
which A molecules arrive at the sphere and thus the rate of production of
AB. The function n(t) simply tells me how many molecules have arrived at
the “perfect absorber” during the time between t = 0 and the time t.

(d) Now, use the result of part (c) to write an equation of the form

dn

dt
= konc0, (4)

and hence write an expression for kon. This is the so-called Smoluchowski
rate.

(e) Find a numerical value for this diffusion limited on rate, kon. Justify the
units it has and provide an actual numerical value by estimating the relevant
parameters that determine kon.

3. What Living Organisms Must Fight.

In the vignette on the “calculus of equilibrium” we talked about how systems
will tend towards the state of maximum entropy. In this problem, you are
going to flesh out the details of the calculations leading to the graphs in that
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vignette and will provide your own graphs.

(A) Equilibrium with respect to mass transport. Consider a system parti-
tioned equally into two parts, each of which contains Ω lattice sites. We want
to write the total entropy as Stot(L) = SL(L)+SR(Ltot−L). Show that these
contributions to the entropy can be written as

SL(L) = kB log
ΩL

L!
(5)

for the left side and

SR(Ltot − L) = kB log
ΩLtot−L

(Ltot − L)!
(6)

for the right side. Using the Stirling approximation, derive the expression

Stot(L) = −kBLtot
[
L

Ltot
ln

L

Ltot
+

(
1− L

Ltot

)
ln

(
1− L

Ltot

)
−

(
ln

Ltot
Ω
− 1

)]
(7)

for the total entropy. Plot the entropy of the left part, the right part and the
total entropy as a function of the number of ligands in the left side of the
container which can run from L = 0 to L = Ltot. To make this plot, you will
need to assume a certain number of lattice sites. Imagine a container with
Ω = 109 lattice sites. If each such lattice site has a volume of 1 nm3, then
the total volume on each side of the partition is 1 µm3.

(B) We next consider the case in which the partition between the two sides
is mobile. In this case, we are interested in how the entropy on the left side
and the right side play against each other, conspiring to give a total entropy
of the form

Stot(x) = SL(x) + SR(x), (8)

where x is the label used to characterize the position of the interface. As
usual, the entropy is given by the Boltzmann formula which in this case takes
the form

SL(x) = kB log WL(x) (9)

and
SR(x) = kB log WR(x). (10)
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To make progress, we now need to reckon the number of states as a function
of the position x of the partition. When the partition is at the midpoint,
each of the subcompartments has a volume V . The volume swept out by the
motion of the partition by a distance x is xA, where A is the cross-sectional
area of that partition. As a result, show that the number of states added or
subtracted due to the motion of the partition is xA/v, leading to the results

WL(x) =
(V+xA

v
)LL

LL!
, (11)

and

WR(x) =
(V−xA

v
)LR

LR!
. (12)

Use these results to show that

Stot(x) = kBLL log
V + xA

v
−kB log LL!+kB log

V − xA
v

−kB log LR!, (13)

and make a plot of the resulting entropy of the two sides and the total entropy
as a function of the position of the partition x. Interpret the equilibrium state
as the state of maximum entropy and how this is equivalent to equality of
pressure.
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