
BE/APh161: Physical Biology of the Cell
Homework 3

Due Date: Wednesday, January 31, 2024

“Champions aren’t made in gyms. Champions are made from something
they have deep inside them - a desire, a dream, a vision. They have to have
the skill, and the will. But the will must be stronger than the skill.” -
Muhammad Ali

1. Energy and Life

One of the strongest things we can say about the properties of living organ-
isms that distinguish them from inorganic materials such as the rocks that
make up the face of Half Dome is that they are always consuming energy.
Figure 1 shows a number of biological processes as viewed through the prism
of energy consumption.

(A) Write a brief, thoughtful paragraph about the meaning of the energy
scale kBT .

(B) In this problem, choose three of the entries in the figure and make your
own calculation of the relevant energy scale and see to what extent you agree
with the reported numbers. Don’t find a way to get the same numbers as
are in the figure. Rather, do this yourself and get your own number. Make
sure you carefully report your thought process and assumptions.

2. Phosphorus, Sulfur and the Lives of Cells

In addition to the big ticket chemical elements in cells (carbon, nitrogen,
oxygen, hydrogen), other elements come in at lower concentrations, but still
with enormous functional importance. Two such elements are phosphorus
and sulfur and in this problem, we will try to figure out how much of the
cell’s dry weight is taken up by these elements and what this implies about
the transport of these elements into the cellular interior.

(a) Let’s begin by trying to estimate the number of phosphorus atoms in a
cell. Where do we find phosphorus? There is 10 mM of ATP in a typical
bacterium. We all know that in both RNA and DNA, every base carries its
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Figure 1: Energy scales of biology. From top to bottom, the energetic cost of
the process of interest increases. All energies are measured in units of kBT.
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Figure 2: Census of carbon, phosphorus and sulfur transporters in E. coli.

own phosphate. Many lipids are phospholipids, with polar heads containing
phosphate atoms as well. Proteins are phosphorylated. Don’t forget ribo-
somes. They too are full of phosphorus atoms because they are 2/3 by mass
RNA. Given these various facts, estimate the total number of phosphorus
atoms in a bacterium. Given a division time of f × 103 s, how many phos-
phate transporters (PitA) are needed to bring all those phosphorus atoms
into the cell during that time?

(b) Next, we consider sulfur. Where do we find sulfur atoms in cells? Clearly
one of the main amino acids, cysteine, has its known covalent binding prop-
erties precisely because of its sulfur atom. The metabolite glutathione has a
concentration of 17 mM. Like in the previous part of the problem, in light of
these facts, make an estimate of the total number of sulfur atoms in a bac-
terial cell. Given a division time of f × 103 s, how many sulfur transporters
(CysUWA) are needed to bring all those sulfur atoms into the cell during
that time?

(c) How do your results from the first two parts compare to the measured
numbers as reported in Figure 2.

3. Synthesizing a Transcriptome: Big Data in Transcription

In class, we briefly discussed the myriad of different ways to measure
gene expression. Writ large, we can either find ways to count the mRNA
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transcripts or the protein products that result from these transcripts. For
example, when properly calibrated, the green fluorescent protein (GFP) in
conjunction with fluorescence microscopy is a favorite approach for measuring
protein copy numbers. Recently, a different way to engage in the dialogue be-
tween theory and experiment has been afforded by the advent of technologies
that make it possible to take a census of the full complement of transcripts
inside individual cells.

One of the key applications of single-cell mRNA sequencing has been its
use to identify “transcriptional fingerprints” that define discrete cell types
within a population containing cells that have committed to multiple possible
fates. One of the best examples of this application of single-cell transcriptome-
wide sequencing comes from projects such as the Tabula muris. This project
measured RNA counts for tens of thousands of genes within tens of thou-
sands of individual cells in the mouse, derived from tens of distinct organs
and tissues. Each single cell transcriptome is a giant ≈ 10,000 dimensional
vector with the ith entry corresponding to the mRNA count of the ith gene.

One widespread approach to visualizing the results from these types of
experiments is shown in Figure 3. In the figure, each point corresponds to an
individual cell whose transcriptome was sequenced. Here, the extremely high
dimensional data resulting from single-cell RNA sequencing (i.e., the number
of mRNA molecules corresponding to each of ≈ 10,000 genes in each cell) was
projected onto two dimensions using methods we will later explore. Further,
once this projection is performed, cells are grouped in clusters. The idea is
that cells within a cluster share much of their gene expression profile and
are therefore identified as unique cell types corresponding to different tissues
within the mouse. In this problem, we will attempt to build some intuition
for how this identification of unique cell types is achieved by working with a
synthetic transcriptome that we build ourselves using our understanding of
the constitutive promoter. Obviously this is a caricature of the real situation
where most genes are not constitutively expressed.

(A) Let’s start by creating a mental picture of the high dimensionality of
single-cell sequencing data by picturing how this data is stored. Specifically,
think of a matrix G where you store the RNA counts for 10,000 genes mea-
sured in 1,000 cells where each row of the matrix corresponds to a given cell.
How many rows and columns would this matrix have? Draw this matrix
schematically, clearly indicating what each dimension of the matrix repre-
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Figure 3: Graphical representation of the Tabula muris single-cell sequenc-
ing data. Individual cells of different organs in the mouse were subjected to
single-cell transcriptome sequencing. Each dot represents a single cell, with
its high-dimensional gene expression vector reduced to a two t-SNE lower di-
mensional representation. Clustering and manual annotation reveal different
tissues and cell types. Adapted from The Tabula Muris Consortium et al.,
Nature 562:367-372, 2018.
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sents. Further, identify the gene expression vector that corresponds to the
number of mRNA molecules detected for all species in cell number 1.

(B) To begin to get a feeling for this kind of data, we imagine an experiment
on cells containing only two genes. These cells can adopt three different
fates based on the expression state of these genes (i.e., low/low, low/high
and high/high). Further, let’s assume that these two genes are constitutively
expressed, and that low and high gene expression levels correspond to an
average of 10 and 35 mRNA molecules per cell, respectively. To remind
ourselves of what the null hypothesis for constitutive promoters looks like,
write the chemical master equation for a constitutive promoter and show
that solving this equation in steady state results in a Poisson distribution.
In the case of the low and high expression levels, give the formula for the
specific Poisson distribution for those two cases.

(C) Plot histograms of the number of mRNA molecules of gene 1 and gene
2 for each cell type, assuming 1,000 cells of each type. This means that
you will invoke the Poisson distribution you derived in the previous part of
the problem and use it to describe the distribution of mRNA counts for the
different cell types.

(D) Generate a synthetic transcriptome matrix G with 1,000 cells of each
type (for a total of 3,000 cells in your dataset) by sampling from the Poisson
distributions that you derived above. Make a plot of this low-dimensional
synthetic transcriptome data set consisting of number of mRNA molecules
of gene 2 vs. number of mRNA molecules of gene 1, where each dot within
the plot corresponds to an individual cell.

Now, we will imagine that we are given this transcriptome data without any
more information than the fact that there should be three cell types within
it. Note that in reality we will rarely have information about number of cell
types within a sample a priori. However, this is a good first step toward
building intuition about the challenges of analyzing single-cell sequencing
data.

In order to find cell types in our synthetic transcriptome, we will resort to
so-called k-means clustering. The steps of this algorithm are illustrated in
figure 4 and can be enumerated as follows:

1. The transcriptome data is plotted. In this case, because we only have
two genes, this corresponds to a two dimensional plot of the number
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of mRNA molecules of gene 2 as a function of the number of mRNA
molecules of gene 1 for each single cell. A set of N random points
within this data set are then selected, with N being the number of
clusters we are trying to identify. These N points will be called the
centroids.

2. The distance of every data point to the centroids is calculated. Each
data point is assigned to its closest centroid. This is our first approxi-
mation to the assignment of cells to our three clusters.

3. Based on the categorization of data points, new centroids are calcu-
lated. For each cluster, calculate their corresponding centroids by tak-
ing the average values of expression for the two genes.

4. Data points are reassigned to their closest centroid. This means that
we now need to take every data point and compute the distance to all
three updated centroids and then to assign them to the centroid they
are closest to.

5. Steps (3) and (4) are repeated until convergence is achieved.

(E) Write a k-means algorithm to find 3 clusters in your synthetic transcrip-
tome data set. In doing so, generate intermediate plots for the iterations of
the algorithm such as those shown in Figure 4.

(F) One of the biggest drawbacks of k-means clustering is that we need to
commit to a given number of clusters in advance. Explore what happens
if you tell your algorithm to look for two and four clusters instead of three.
Document some of the final answers from the algorithm and comment on why
it converged to that answer. Comment on how all of these answers correspond
to what you actually know about the system given that you generated the
transcriptomes!

Finally, it is important to note that all algorithms are limited in the sense
that they require commitments by specifying parameters. In k-means, we
had to commit to a number of clusters. However, there are other approaches
to finding clusters that do not require specifying cluster number a priori such
as DBSCAN.

(G) Read about DBSCAN and explain how it works by drawing a graphical
example (this can be in cartoon form). For this algorithm, what are the
parameters we need to commit to?
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Figure 4: The k-means clustering algorithm. (i) A set of N points are cho-
sen randomly from the dataset to become the centroids of the N clusters to
identify. (ii) Each data point is assigned to its closest centroid. (iii) New cen-
troids are calculated for each new cluster. (iv) Data points are reassigned to
their new centroids. By iteratively repeating steps (iii) and (iv) convergence
can be ultimately reached.
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