
BE/APh161: Physical Biology of the Cell
Homework 2

Due Date: Wednesday, January 17, 2024
Solutions by: Tom Röschinger

“Whatever you can do, or dream you can do, begin it. Boldness has genius, power and magic
in it.” - Goethe

1. The concentration rule of thumb

In the last homework, we worked out the rule of thumb that one molecule per E. coli cell
corresponds to a concentration of ≈ 1 nM.

(a) As an application of this idea, how many H+ ions are there in a bacterial cell if the pH
is 7.0?

Solution: We convert pH to concentration of H+ ions from the relationship

[H+] = 10−pHM. (1)

So for a pH of 7.0, [H+] = 10−7 M, or 102 nM. Thus, since we know that 1 molecule per
bacterium is equivalent to a concentration of ≈ 1 nM, a pH of 7.0 corresponds with 100 H+

ions in the cell.

(b) It is very useful to have a sense of how far molecules are apart at a given concentration.
Work out a formula that relates the spacing between molecules d to the concentration c.
Then, make a plot that shows the distance between molecules as a function of the concen-
tration for concentrations ranging from nM to M.

Solution: Our goal is to determine the average spacing between molecules given a specified
concentration. From the molar concentration, we can express the molecular density as

cmol

L
· 6× 1023 molecules

mol
· L

1024 nm3
= c 0.6 molecules/nm3. (2)

Inverting this result, we generate the volume of solution occupied by each molecule at molar
concentration C M,

V = 1.66 nm3/molecule 1/c. (3)

The cubed root of this volume thus indicates the average separation between molecules, such
that we may conclude

d ∝ V 1/3 =
1.18

c1/3
nm. (4)
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Figure 1: Plot of average separation d between molecules against concentration ranging from
nM to M.

(c) As an application of your thinking from part (b), explain what the concept of the “critical
concentration” is for the polymerization of actin filaments. Then, provide a rough estimate
of the mean spacing between actin monomers in a solution at the critical concentration.

Solution: Polymerization in solution can be considered under a simple model: after a
nucleation phase where 3-4 monomers randomly interact to form a nucleus which can then
be elongated. This elongation is then governed by monomer capture events (monomers
polymerize onto one end of the polymer) and monomer escape events (a monomer leaves
one end of the polymer). Monomer capture is dependent on the interaction between one
end of the polymer and a monomer in solution, and is therefore likelier the smaller the
mean separation between monomers in solution - we can capture this by setting the rate of
monomer capture to be proportional to the concentration of monomers. Monomer escape,
however, does not require interaction with monomers in solution and is therefore independent
of the monomer concentration. This can be written as

dn

dt
= konC − koff (5)

where n is the number of monomers that constitute the polymer we are considering, kon
(resp. koff ) are rate constants for monomer capture (resp. escape), and C is the monomer
concentration in solution.
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We can then see that the system is in steady state when C = Ccrit ≡ koff
kon

. This is referred
to as the critical concentration - below this concentration the filaments depolymerize and
above this concentration the filaments keep polymerizing, pulling monomers out of solution
until the critical concentration is reached.

Actin polymerization, however, is more complicated than this draft model captures. It turns
out that the ends of actin filaments behave asymetrically - i.e. actin filaments have a ‘plus’
end and a ‘minus’ end with the ‘plus’ end having a higher growth (and shrinkage) rate. A
better first-order model is given by

dn

dt
= k+

onC + k−
onC − k+

off − k−
off (6)

where the ‘+’ and ‘-’ superscripts in the rate constants denote the ‘plus’ and ‘minus’ end of
the filament respectively. (Note: There are more subtleties involved in actin polymerization
- e.g. the monomer capture rates also depend on whether the monomer is ADP or ATP
bound - but the above is sufficient as a first-order model.)

This system now has three critical concentrations: C+ ≡ k+off

k+on
below which both ends shrink,

C− ≡ k−off
k−on

above which both ends grow, and CTM ≡ k+off+k−off
k+on+k−on

at which the system reaches

steady-state (referred to as ‘treadmilling’) whereby the ‘plus’ end grows at the same rate
at which the ‘minus’ end shrinks. For concentrations between C− and C+, the ‘plus’ end
grows and the ‘minus’ end shrinks, with the relative rates of the two processes determining
whether or not the filament elongates.

As per BNID 112788, C+ ∼ 0.06 µM and C− ∼ 0.6 µM, corresponding to a mean separation
of ∼ 300 nm and ∼ 100 nm respectively. CTM lies somewhere between the two, which we
estimate to be ∼ 0.2 µM and which corresponds to a mean separation of ∼ 200 nm.

2. RNA Polymerase and Rate of Transcription

One of the ways in which we are trying to cultivate a “feeling for the organism” is by
exploring the processes of the central dogma. Specifically, I want you to have a sense of the
number of copies of the key molecular players in the central dogma as well as the rates at
which they operate. Further, I argue that it is critical you have a sense of how we know
these numbers.

(a) If RNA polymerase subunits β and β′ together constitute approximately 0.5% of the
total mass of protein in an E. coli cell, how many RNA polymerase molecules are there per
cell, assuming each β and β′ subunit within the cell is found in a complete RNA polymerase
molecule? The subunits have a mass of 150 kDa each. (Adapted from problem 4.1 of Schleif,
1993.)
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Solution: We have discussed measurements showing that the dry weight of an E. coli.
cell is roughly 30% of its total mass, half of which is protein. The total mass of the cell is
estimated to be a picogram from the assumption that its density is nearly that of water and
its volume roughly 1 µm3. It is given in the problem that the β and β′ subunits together
have a mass of 300 kDa and comprise 0.5% of the protein mass. The number of β, β′ subunit
pairs is assumed to equal the number of RNA polymerases (RNAP). Putting all this together
yields

# of RNAP =
total mass of RNAP in cell

mass per RNAP
=

0.15× 10−12 g× 0.005

3× 105 Da× 1.6× 10−24 g/Da
= 1.5× 103.

(7)

(b) Rifampin is an antibiotic used to treat Mycobacterium infections such as tuberculosis.
It inhibits the initiation of transcription, but not the elongation of RNA transcripts. The
time evolution of an E. coli ribosomal RNA (rRNA) operon after addition of rifampin
is shown in Figure 1(A)–(C). An operon is a collection of genes transcribed as a single
unit. Use the figure to estimate the rate of transcript elongation. Use the beginning
of the “Christmas-tree” morphology on the left of Figure 1(A) as the starting point for
transcription.

Solution: Comparing Figure 1(A) and Figure 1(B), one sees that 40 seconds after rifampin
addition roughly 1.5 kb of the DNA from the start site has become free of RNAP. The
micrographs are aligned well enough that one can assume the left edge in all of them is
the start site. Assuming that the last RNAP to initiate transcription did so at nearly the
same time as rifampin addition, one can infer that this RNAP transcribed 1.5 kb of DNA in
40 seconds, implying an elongation rate of

Elongation Rate =
1.5 kb

40 seconds
≈ 0.04 kb/sec (8)

Making the same comparison of Figure 1(A) and 1(C), indicates an elongation rate of
3.5 kb/70 sec = 0.05 kb/sec, or roughly 50 nucleotides/sec.

(c) Using the calculated elongation rate estimate the frequency of initiation off of the rRNA
operon. These genes are amongst the most transcribed in E. coli.

Solution: The operon is roughly 6 kb long. Given the elongation rate in (b), one RNAP
would require 6 kb

0.05 kb/sec
= 120 seconds to complete a transcript.

To estimate the rate at which transcripts of the operon are made, one needs the number of
RNAP on the operon at any one time. Looking at the micrograph, one can make a rough
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Figure 2: Effect of rifampin on transcription initiation. Electron micrographs of E. coli rRNA
operons: (A) before adding rifampin, (B) 40 s after addition of rifampin, and (C) 70 s after
exposure. No new transcripts have been initiated, but those already initiated are carrying
on elongation. In parts (A) and (B) the arrow signifies the site where RNaseIII cleaves
the nascent RNA molecule producing 16S and 23S ribosomal subunits. RNA polymerase
molecules that have not been affected by the antibiotic are marked by the arrows in part (C).
(Adapted from L. S. Gotta et al., J. Bacteriol. 20:6647, 1991.)

count that under normal conditions there are 10 – 20 RNAP per kilobase and that the operon
is roughly 6 kb long. This implies roughly

6 kb× 15 RNAP/kb = 90 RNAP (9)

on the operon, and if each RNAP requires 120 seconds to complete transcription, then the
initiation frequency of the operon is 90/120s = 0.75s−1. This corresponds to a production
rate that just over ∼ 1 transcript per second.
Alternatively, we can notice that the mean spacing between RNAPs is roughly 1000nt/15
≈ 67nt. The average speed of each such RNAP (from the previous part of the problem) is
50 nt/s. Hence, the initiation frequency is

50 nt/s

67 nt
≈ 0.75 s−1 (10)

which is the same as our first result.
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3. A feeling for the complete blood count (CBC) test.

Typical results for a complete blood count (CBC) are shown in Table 1. Assume that an
adult has roughly 5 L of blood in his or her body. Based on these values estimate:

(a) the number of red blood cells.

Solution: From the table, we see that a typical red blood cell count is around 5 × 106

cells per µL. Scaling this up to the 5 L of blood, we get a total number of red blood cells,

5L× 106 µL

L
× 5× 106

cells

µL
≈ 2× 1013 cells

(b) the percentage in volume they represent in blood.

Solution: Red blood cells have a volume of around 100 fL (BNID:110805). This means
the total volume of all 20 trillion red blood cells is

100
fL

cell
× 2× 1013 × L

1015fL
= 2 L

This means that the red blood cells take up two-fifths, or about 40% of the total blood
volume. Coincidentally, the hematocrit value from the table corresponds to this value as
empirically determined, and we see that 40% is right on the money for the actual value.

(c) their mean spacing.

Solution: Converting our 5 L of blood into a length scale more meaningful for cells, we
get that we have 5× 1015µm3 of blood. Dividing by the number of cells, we get

5× 1015µm3blood volume

2× 1013cells
= 250µm3

blood volume that each cell is “allotted”. We can alternatively think of this as each cell
getting an ≈ 6×6×6µm box to call its own, meaning there is ≈ 6µm spacing between cells.

(d) the total amount of hemoglobin in the blood.
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Solution: Reading off the table, we see that hemoglobin is around 15g/dL. Scaling up to
5 L of blood, we get a total hemoglobin mass of

15
g

dL
× 10

dL

L
× 5L = 750g

(e) the number of hemoglobin molecules per cell.

Solution: To convert the mass of hemoglobin to a number of hemoglobin molecules we
simply need to divide by the mass of a hemoglobin molecule. To estimate this, we harken
back to Problem 2, where the typical amino acid is 100 Da and the typical protein, meaning
the typical protein is around 30 kDa in mass. If we recall that hemoglobin is actually made
of 4 subunits, we might adjust our estimate of hemoglobin mass to be four times larger, or
around 120 kDa. (It turns out that this is a bit of an over estimate, since each subunit isn’t
as big as a “typical” protein, but this is sufficient for an order-of-magnitudes estimate). This
gives us

750 g of hemoglobin

120 kDa
× 6× 1020kDa

g
≈ 4× 1021hemoglobin molecules

Finally, the number of hemoglobin per cell is

4× 1021hemoglobin

2× 1013cells
= 2× 108hemoglobin/cell

(f) the number of white blood cells in the blood.

Solution: Again reading off the table, we see that a typical value for white blood cells is
8× 103 per µL. Scaling up to 5 L of blood, we get a total number

5L× 106µL

L
× 8× 103

cells

µL
≈ 4× 1010cells

4. Migration of the bar-tailed godwit

Animal migrations are one of the greatest of interdisciplinary subjects, bringing together
diverse topics ranging from animal behavior to the physics of navigation to the metabolism
required for sustained long-distance travel. The bar-tailed godwit is a small bird that each
year travels between Alaska and New Zealand on the same kind of incredible nonstop voyage
taken by happy tourists in modern long-distance jetliners as shown in Figure 3. During a
visit to New Zealand’s South Island, one of us had the chance to see these amazing birds in
Okarito Lagoon with a naturalist guide who claimed that over the course of their ten-day,
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Test Value

Red blood cell count (RBC) Men: ≈(4.3–5.7) × 106 cells/µL
Women: ≈(3.8–5.1) × 106 cells/µL

Hematocrit (HCT) Men: ≈(39–49)%
Women: ≈(35–45)%

Hemoglobin (HGB) Men: ≈(13.5–17.5) g/dL
Women: ≈(12.0–16.0) g/dL

Mean corpuscular hemoglobin (MCH) ≈(26–34) pg/cell
MCH concentration (MCHC) ≈(31–37)%
Mean corpuscular volume (MCV) ≈(80–100) fL
White blood cell count (WBC) ≈(4.5–11) × 103 cells/µL
Differential (% of WBC):
Neutrophils ≈(57–67)
Lymphocytes ≈(23–33)
Monocytes ≈(3–7)
Eosinophils ≈(1–3)
Basophils ≈(0–1)

Platelets ≈(150–450) × 103 cell/µL

Table 1: Typical values from a CBC. (Adapted from R. W. Maxwell, Maxwell Quick Medical
Reference, Tulsa, Maxwell Publishing Company, 2002.)

ten-thousand kilometer trip, these migratory birds lose 1/3 of their body mass. In this
problem, we make a series of simple divide-and-conquer estimates to see whether this claim
might be true.

(a) Using dimensional-analysis arguments, work out how the drag force experienced by flying
godwits depends upon the density of air, the speed of the birds and the size of the birds.
Specifically, work out the coefficients α, β and γ in the expression

Fdrag = const. ραvβLγ. (11)

Solution: Because the units of force are kg· m/s2, and the quantity ρ is the only parameter
on the right of Eq. 11 that features the mass, we can conclude that α = 1. Once we have
determined α, the whole structure falls like dominoes. Using similar reasoning, we see that
β = 2 since v is the only quantity featuring the time, and we need two powers of time in the
denominator to match the units on the left side of the equation. Dimensional consistency
then requires that γ = 2 as well, signaling that the drag force scales with the area of the
moving object.

(b) Work out the power expended by the bar-tailed godwit to overcome the drag force. Then,
work out the total energy expended during the ten-day migration in overcoming this drag
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Figure 3: Map showing the migration pattern of the bar-tailed godwit. Adapted from Gill
et al., Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor
rather than barrier?, Proc Biol Sci. 2009 Feb 7; 276(1656): 447-457.
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force.

Solution: We can compute

power during flight, P = Fdragv = const. · ρv3L2 (12)

and the total energy expended is

energy expended, E = Pttot (13)

where ttot is the total time of flight. For the purpose of an order of magnitude estimate, we
will assume that the dimensionless constant in (12) is of order unity. The average velocity
of the bird during its trip can be estimated as

v =
total migratory distance

time of flight
(14)

≈ 104 km

10 days
(15)

≈ 107 m

10× 105 s
(16)

≈ 10 ms−1 (17)

By looking up pictures of satellite trackers being put on bar-tailed godwits, we can see that
the bird is roughly the size of a human palm, i.e. L ≈ 10−1 m. The density of air is ρ ≈ 1
kg m−3. Then we have

P ≈ (1 kgm−3)× (10 ms−1)3(10−1 m)2 ≈ 10W (18)

and
E = Pttot ≈ (10 W)× (10× 105 s) ≈ 107 J (19)

(c) Given that burning fat yields 9 kcal/g, work out the number of grams of fat that would
need to be burned to sustain the ten day flight of the bar-tailed godwit.

Solution: Using our result from the previous part,

total fat required =
107 J

9 kcal/g
(20)

≈ 107 J

9× kcal/g× 4000J/kcal
(21)

≈ 250 g (22)
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Taking the birds to be spherical with the density of water, we can estimate a body mass of
∼ 500 g. Therefore, the claim that the bar-tailed godwit loses 1/3 of its body mass over its
migration is order-of-magnitude correct.
Note: Our estimate for the energy expenditure is an overestimate by a factor of a few - much
of this error is due to the rough way we have estimated the drag force experienced by the
bird, from which we should know to only expect order-of-magnitude results. The body mass
of the bird is also slightly overestimated here, with bar-tailed godwits weighing in closer to
∼ 300 g.

5. Post-Translational Modifications and “nature’s es-

cape from genetic imprisonment”

In a very interesting article (“Post-translational modification: nature’s escape from
genetic imprisonment and the basis for dynamic information encoding”), Prof. Jeremy
Gunawardena discusses how we should think about post-translational modifications as a
way of expanding the natural repertoire of the 20-letter amino acid alphabet. Similarly,
Prof. Christopher Walsh (also at Harvard) wrote a whole book entitled “Posttranslational
Modifications of Proteins: Expanding Nature’s Inventory”, again making the point that by
adding chemical groups to proteins we can significantly change their properties.

(a) Provide at least one mechanistic idea about how adding a chemical group to a protein
can alter its structure or function. Your answer should be offered in less than a paragraph,
but should be concrete in its assertions about how these modifications change the protein.
Why does Gunawardena refer to this process of post-translational modification as “escape
from genetic imprisonment”?

Solution: There are many ways in which adding a chemical group can affect the structure
of a protein. For instance, it could promote dimerization by providing an energetically fa-
vorable surface for two binding events. Alternatively, adding a charged chemical group could
cause increased electrostatic repulsion within the protein. This could cause the protein to
“open up,” which, among other effects, could alter function by allowing access to previously
occluded binding pockets.

(b) As a toy model of the combinatorial complexity offered by post-translational modifica-
tions, let’s imagine that a protein has N residues that are able to be phosphorylated (NOTE:
please comment on which residues these are - the answer is different for bacteria and eu-
karyotes). How many distinct states of the protein are there as a result of these different
phosphorylated states? Make an approximate estimate of the mass associated with a phos-
phate group and what fraction of the total mass this group represents. Similarly, give some
indication of the charge associated with a phosphate group. What ideas do you have about
how we can go about measuring these different states of phosphorylation?
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Solution: The state of the protein will be determined by which residues are phosphory-
lated, not merely how many. Therefore, for N residues, there will be 2N states. For bacteria,
the most commonly phosphorylated amino acids are histidine, serine, threonine, and tyro-
sine , while for eukaryotes they are serine, threonine, and tyrosine. A phosphate group is
composed of a phosphorus and four oxygen atoms. Its mass it thus roughly 100 Daltons,
which is approximately the same as that of an amino acid.

A typical protein is composed of 300 amino acids, and so, the fraction of the total mass that
one represents is 100 Da/30, 000 Da = 5 × 10−3. A phosphate group has a charge of −2e−

when bound to a residue, which can be very important for protein’s function. The addition
of a phosphate group will greatly affect mass to charge ratio, so the use of mass spectrometry
would be a very powerful technique for measuring the number of phosphorylated amino acids.

(c) In this part of the problem, we make a very crude estimate of the number of sites on a
protein that are subject to phosphorylation. To do so, imagine that the protein is a sphere
with N residues. How does the radius of that sphere depend upon the number of residues in
the protein? Given that estimate, what is the number of residues that are on the surface?
Given that number, what fraction of those are phosphorylatable? Remember, these are crude
estimates. Work out these results for a concrete case of a typical protein with roughly 400
amino acids.

Solution: In our toy model we can assume that each residue is itself a sphere. The crude
scaling of the radius of our spherical protein will go as N1/3. However, we can do a little
better. If the amino acid spheres are maximally close packed, then the volume of the protein
will be roughly 0.75N × Vaa. Therefore, the radius of our protein will be given by R =
(0.75N)1/3Raa. Given that a typical protein has 400 amino acids and a radius of 2.5 nm, the
radius of a single amino acid becomes Raa ≈ 0.4 nm. Therefore, the scaling of the protein
radius with the number of amino acids will go approximately as

R(N) ≈ 0.4× (0.75N)1/3 nm. (23)

As a very crude estimate for the total number of residues on the surface of the protein, we
can take the total surface area and divide it by the 2D projection area of a single residue,
that is

Sarray = 4πR2, (24)

Sproj
aa = πR2

aa, (25)

Nsurface =
Sprotein

Sproj
aa

= 4× (0.75N)2/3 ≈ 3N2/3. (26)

Taking N = 400 for a typical protein, we find that the number of surface residues to be

Nsurface ≈ 150. (27)

As discussed in part (b), 4 of 20 amino acids are commonly phosphorylated in bacteria.
Making the crude assumption that all amino acids are equally represented on the surface,
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only 20% of the resiudes, or 150×0.2 ≈ 30, will on average be phosphorylatable. This means
that a total of 230 ≈ 106 phosphorylation states are available to proteins.

(d) Let’s close out these estimates by thinking about a bacterial cell. If all 3× 106 proteins
in such a cell can be phosphorylated with the number of different phosphorylation states
that you estimated above, how many distinct cells could we make with all of these different
states of phosphorylation.

Solution: If each protein is distinguishable, the total number of cells that could be created
will be

Ncells = (230)3×106 = 102×107 , (28)

since there are effectively 108 sites available for phosphorylation. However, if we assume
instead that each protein is indistinguishable from any other, then the situation is identical
to choosing 3×106 proteins to make a cell from the possible 230 phosphorylation states (with
replacement). The number of different cells in this case becomes (see the “Combinations
with Repetition” section here: https://www.mathsisfun.com/combinatorics/combinations-
permutations.html)

Ncells =

(
230 + 3× 106 − 1

3× 106

)
≈ (106 + 3× 106)!

(106)!(3× 106)!

≈ (4× 106)10
6

(106)!

≈ 1010
6

.

(29)

Taking the geometric mean of the upper and lower limits, we obtain

(102×107 × 1010
6

)1/2 ≈ 1010
7

, (30)

which is an “astronomically large” number.

6. Real Estate for the Factories of ATP Synthesis

We are captivated by the tension between those things about living organisms that are
universal and those things that are baroque and specific to a given organism. One of the
nearly universal features of living organisms on our planet is their use of ATP hydrolysis
as an energy source for a huge variety of processes. Further, as explained below, there is
a nearly constant power density to run cellular life across the entire span of the tree of
life. Where does all of this ATP come from? Cells have tiny molecular machines known as
ATP synthase in the membrane which use an ion gradient to drive the 6000 rpm rotation
of these machines to produce a few ATPs each rotation. However, the ATP is consumed
within the volume of cells, but is produced on membranes. This leads to the possibility
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that as cells get bigger, there may be a point at which the surface area is insufficient to
keep up with the demands of the cytoplasmic volume. Indeed, this problem explores the
hypothesis that for cells above a certain size, the synthesis of ATP at the plasma membrane
(such as in bacteria) no longer sufficed and that a new specialized energy factory (i.e. the
mitochondria) was required.

(a) By considering the cost of protein synthesis for a dividing bacterium with a 1000 s division
time, justify the assertion that the power usage is

power density = 106
ATP

µm2 s
. (31)

As a reminder, one way to do this estimate is to figure out how many proteins there are in
an E. coli cell and how many amino acids there are per protein, noting that it costs 4 ATP
equivalents for every polypeptide bond.

Solution: Here we use the estimate that one E. coli cell weighs about 1pg, 30% of which is
dry mass and of which half is protein. This would give us a total of 0.1pg of protein weight.
Using the fact that one amino acid weighs about 100 Daltons, and 1 Dalton equals 1g/mol,
we can compute the number of amino acids to be 0.1pg ×mol/100g ≈ 109. Assuming that
all these amino acids connected by polypeptide bonds, that is a total of 4× 109 ATPs that
are required to make all proteins in the cell. Given the division time of 1000s, rate of ATP
consumption is 4× 106ATP/s. To get the power usage, we use that E. coli has a volume of
about 1µm3, which gives us a power usage of

power density = 4× 106ATP/µm3s.

(b) As shown in Figure 4, compute the maximum radius of a spherical cell that could
sustain the demands of ATP synthesis (i.e. the 106ATP/(µm2 s) required to run the cellular
economy) by the presence of ATP synthases on its surface. Use your results to comment
on the way prokaryotes and eukaryotes generate ATP and how large eukaryotes get around
this conundrum.

Solution: The total power of the cell is given by its power density multiplied by the volume
of the cell with radius R, which is given by

power = 4× 106ATP/µm3s× 4R3
cell = 107 × ATP R3cell/s µm3,

where we assumed the cell is a sphere and π/3 ≈ 1. Now, in the problem it is stated that
ATP synthase turns at 6000rpm, producing few ATPs per rotation. This gives us an ATP
production rate of

ATP production rate = 6000 rotations/min×min/60s×f ×ATP/rotation = f ×102ATP/s.
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To find out how many synthases can be fit into the membrane, we have to compute the cross-
section of a single protein. Assuming the protein is a sphere containing of 300 amino acids,
the radius is approximately the third root if the volume, Rprotein ∼ V (1/3) = 6. An amino-
acid has a diameter on the order of 1nm, so the radius of our protein sphere is approximately
6nm. The cross-section of the protein is then given by

cross section = πR2
protein ≈ 100nm2.

To compute how many synthases can possibly fit into the membrane, we compute the surface
area of the cell, assuming it is a sphere, and divide by the cross-section of one synthase,

synthases in membrane = 4πR2
cell/100nm

2.

For the cell to be functional, the ATP production of a fully packed membrane has to exceed
the ATP required inside the cell, therefore,

f × 102ATP/s× 4πR2
cell/100nm

2 > 107 × ATP R3
cell/s µm

3,

which we can solve for the radius of the cell,

Rcell < f µm.

Here we see, that for cells to be able to produce their entire ATP need from ATP synthases
in the cell membrane, they can only be the size of a few microns. Eukaryotes solve this issue
by having mitochondria, which have are organelle within the cell that have an increased
surface area by folding its inner membrane, allowing for more ATP synthases to be included
in its membrane.
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Figure 4: Surface coverage of bacterial cells with ATP synthase. For small cells, the de-
mands of the cytoplasmic power consumption can be met by ATP synthases on the plasma
membrane. However, for larger cells, there is not enough surface area to keep up with the
demands of the power needs of the cellular interior.
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