
BE/APh161: Physical Biology of the Cell
Homework 5

Due Date: Wednesday, February 9, 2022

“Thinking, analyzing, inventing are not anomalous acts; they are the normal
respiration of the intelligence.” - Jorge Luis Borges

1. Setting up the fly body plan.

One of the most important ideas for how positional information arises in
multicellular organisms is the idea of a morphogen gradient (another serious
contender is a Turing pattern). In this problem we will use a steady-state
solution to the reaction-diffusion equation for Bicoid to understand how the
exponential profile shown in Figure 1 is set up. Stated simply, the develop-
ment of the Bicoid gradient can be thought of as resulting from a competition
between the diffusion of Bicoid protein that is synthesized at the anterior end
of the embryo (the mother deposits localized bcd mRNA there as shown in
Figure 2) and the degradation of this protein while it is diffusing around.

(A) Give a brief description (a paragraph or less) of the Bicoid gradient in
Drosophila and how it is relevant to fly development. Further, to get a feeling
for the Bicoid gradient, redraw the Bicoid profile shown in Figure 1 in terms
of the absolute number of Bicoid proteins per nucleus. You can make the
drawing by hand or plot some approximate curve using Python. To make
this estimate, you will need to use the information about nuclear sizes in nu-
clear cycle 14 provided in Figure 4C of Gregor2007a (provided on the course
website).

(B) Make a derivation of the reaction-diffusion equation and use it to justify
the form

∂Bcd(x, t)

∂t
= D

∂2Bcd(x, t)

∂x2
− Bcd(x, t)

τ
. (1)

Make sure you explain carefully where all of these terms come from. To
do so, begin the usual way by considering a one-dimensional concentration
profile and by finding the rate of change of number of Bicoid molecules in
the box at position x by considering the flux into (Jm(x − ∆x/2)) and out
of ((Jm(x+ ∆x/2)) the box using arguments like those made in class. How-
ever, you need to generalize that treatment by accounting for the fact that
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Figure 1: The Bicoid morphogen. The Bicoid activator is distributed in an
exponential gradient. (Adapted from F. Liu et al., Proc Natl Acad Sci USA
110:6724 2013.)
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Figure 2: bicoid mRNA distribution. Using single molecule mRNA FISH,
the localization of individual bicoid mRNA molecules at the anterior end of
the embryo can be revealed. (Adapted from Petkova et al. (2014), Current
Biology 24:1283.)
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a Bicoid molecule has the probability r∆t of degrading in time interval ∆t,
where r ≈ 1/τ , where τ is the degradation time.

(C) Now solve this equation in steady-state by finding the general solution
subject to the boundary condition that J(0, t) = j0 and J(L, t) = 0. Make
sure you explain what these boundary conditions mean relative to the biology
of the problem. Suggest approximations that can be made to simplify the
result, specifically, can you exploit the fact that the embryo is much larger
than the decay length to simplify the solution?

(D) Describe the observed concentration profile of Bicoid along the anterior-
posterior axis of the fly mathematically. What is the functional form? Exper-
imentally, Thomas Gregor has found that the Bcd profile is an exponential
of the form Bcd(x) = Bcd0e

−x/λ, does that jibe with your solution?

(E) The paper by Drocco et al. uses a photoactivatable fluorescent protein
to measure the lifetime of the Bicoid protein. Read the paper (available on
the course website) and explain the technique in one paragraph. You might
find it useful to draw a schematic plot such as shown in Figure 1f of the paper.

(F) What is the value of the decay constant λ for the gradient shown in
Figure 1? To estimate this magnitude, you can just fit “by eye” by plotting
your solution for different values of Bcd0 and λ. Now, compare the measured
λ value with that you can predict by plugging in realistic values of D, τ into
your solution. To make this possible, read the papers by Abu-Arish et al.
and Drocco et al., provided on the course website.

(G) One of the most important and interesting ideas to come out of the idea
of positional information contained in morphogen gradients was the so-called
French flag model which we will explore here. This model posits that the
Bicoid concentration dictates the position of the cephalic furrow. As seen in
Figure 3, the idea of the model is that boundaries in the embryo are deter-
mined by threshold values of the morphogen. The idea of the model is that
if the gene dosage gets changed, as seen in the mutant profile, the bound-
ary will still occur at the same value of the morphogen. That hypothesis is
enough to determine the shift in boundary position with gene dosage.

To test this model, we will analyze several experiments (Nusslein-Vohlhard
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Figure 3: Concept of the French flag model.
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and Driever and Liu et al.) where they measured cephalic furrow position as
a function of different dosages of the bicoid gene in embryos. An exponential
gradient of Bicoid is described by

Bcd(x, λ, α,Bcd0) = Bcd0 α e
−x/λ, (2)

where x is the position along the embryo, Bcd0 is the Bicoid concentration at
x = 0, λ is the decay constant of the gradient and α is the Bicoid dosage, with
α = 1 corresponding to the wild-type. Work out a model for the position of
the cephalic furrow xnew as a function of the gene dosage α, the morphogen
gradient decay length λ and the position of the wild-type cephalic furrow,
xCF .

(H) Note that, given a measured xCF ≈ 32% of the embryo length, your
model has no free parameters. Compare the prediction from your model
with the data for xnew vs. α obtained by Nusslein-Vohlhard, and by Driever
and Liu et al.. Comment on how well your prediction matches the data that
is provided with the homework. What could be going on?

2. What Living Organisms Must Fight.

In the vignette on the “calculus of equilibrium” we talked about how systems
will tend towards the state of maximum entropy. In this problem, you are
going to flesh out the details of the calculations leading to the graphs in that
vignette and will provide your own graphs.

(A) Equilibrium with respect to mass transport. Consider a system parti-
tioned equally into two parts, each of which contains Ω lattice sites. We want
to write the total entropy as Stot(L) = SL(L)+SR(Ltot−L). Show that these
contributions to the entropy can be written as

SL(L) = kB log
ΩL

L!
(3)

for the left side and

SR(Ltot − L) = kB log
ΩLtot−L

(Ltot − L)!
(4)
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for the right side. Using the Stirling approximation, derive the expression

Stot(L) = −kBLtot
[
L

Ltot
ln

L

Ltot
+

(
1− L

Ltot

)
ln

(
1− L

Ltot

)
−

(
ln

Ltot
Ω
− 1

)]
(5)

for the total entropy. Plot the entropy of the left part, the right part and the
total entropy as a function of the number of ligands in the left side of the
container which can run from L = 0 to L = Ltot. To make this plot, you will
need to assume a certain number of lattice sites. Imagine a container with
Ω = 109 lattice sites. If each such lattice site has a volume of 1 nm3, then
the total volume of each side is 1 µm3.

(B) We next consider the case in which the partition between the two sides
is mobile. In this case, we are interested in how the entropy on the left side
and the right side play against each other, conspiring to give a total entropy
of the form

Stot(x) = SL(x) + SR(x), (6)

where x is the label used to characterize the position of the interface. As
usual, the entropy is given by the Boltzmann formula which in this case takes
the form

SL(x) = kB log WL(x) (7)

and
SR(x) = kB log WR(x). (8)

To make progress, we now need to reckon the number of states as a function
of the position x of the partition. When the partition is at the midpoint,
each of the subcompartments has a volume V . The volume swept out by the
motion of the partition by a distance x is xA, where A is the cross-sectional
area of that partition. As a result, show that the number of states added or
subtracted due to the motion of the partition is xA/v, leading to the results

WL(x) =
(V+xA

v
)LL

LL!
, (9)

and

WR(x) =
(V−xA

v
)LR

LR!
. (10)

Use these results to show that

Stot(x) = kBLL log
V + xA

v
−kB log LL!+kB log

V − xA
v

−kB log LR!, (11)
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and make a plot of the resulting entropy of the two sides and the total en-
tropy as a function of the position of the partition x.

3. Dynamics of A→ B reactions.

One of the most interesting topics in science is how we have learned to probe
deep time. Surprisingly, DNA sequence has permitted us to explore deep
time in the biological setting. Of course, biology and the dynamics of the
Earth are not independent phenomena and the point of the rest of this prob-
lem is to better understand the details of how scientists figure out how old
the Earth is as well as how old various fossil-bearing strata are. To that
end, we will first consider a simple model of the radioactive decay process
for potassium-argon dating methods, recognizing that there are many other
dating methods that complement the one considered here.

Potassium-Argon dating

Potassium-argon dating is based upon the decay of 40K into 40Ar. To a
first approximation, this method can be thought of as a simple stopwatch in
which at t = 0 (i.e. when the rocks crystallize), the amount of 40Ar is zero,
since it is presumed that all of the inert argon has escaped. We can write an
equation for the number of potassium nuclei at time t+ ∆t as

NK(t+ ∆t) = NK(t)− (λ∆t)NK(t). (12)

Stated simply, this means that in every small time increment ∆t, every nu-
cleus has a probability λ∆t of decaying, where λ is the decay rate of 40K
into 40Ar. We also employ the important constraint that the number of total
nuclei in the system must remain constant, so that

NK(0) = NK(t) +NAr(t), (13)

where NK(0) is the number of 40K nuclei present when the rock is formed,
NK(t) is the number of 40K nuclei present in the rock at time t, and NAr(t)
is likewise the number of 40Ar nuclei present in the rock at time t. In this
part of the problem you will use equations 12 and 13 to construct differential
equations to find the relationship between NK(t), NAr(t), and t.
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(A) Using equations 12 and 13 as a guide, write differential equations for
NK(t) and NAr(t). How do these two expressions relate to one another?

(B) Next, we note that the solution for a linear differential equation of the
form dx

dt
= kx is given by x(t) = x(0)ekt. Use this result to solve for NK(t).

(C) Use the constraint encapsulated by equation 13 to write an equation for
the lifetime of the rock, t, in terms of the ratio NAr

NK
.

Age of the Galapagos Islands

The potassium-argon dating method described above has been used in
several contexts central to some of the most important evolutionary ques-
tions in biology. As we go from West to East in the Galapagos Archipelago,
the ages of the islands increase, with Santa Cruz older than Isabella, for ex-
ample. But how are these numbers known and what evidence substantiates
these claims when naturalist guides make them? In a beautiful article from
Science Magazine in 1976 (Science, New Series, Vol. 192, No. 4238 (Apr. 30,
1976), pp. 465-467), Kimberly Bailey tells us of her efforts to determine the
ages of the islands of Santa Cruz, San Cristobal and Espanola. We will now
use her data to find out the K-Ar ages of several of these islands ourselves.

(D) Read Bailey’s short paper and give a brief synopsis (1 paragraph) of her
approach and findings.

(E) Use the results from Sample H70-130 and JD1088 of Table 1 to determine
ages for Santa Cruz Island and Santa Fe Island. To do this, you will need to
navigate a few subtleties. First, note that the amount of Argon is presented
in moles, and so you can use those numbers directly. To determine the num-
ber of moles of 40K, you will need to use the weight percentage that is K2O
and use that in combination with the mass of the sample to figure out how
much K is present. Note that not all of the potassium in the sample will be
the isotope 40K, so you will need to use the ratio of 40K to total potassium,
40K
Ktotal

≈ 1.2×10−4. Additionally, use the decay constant λ ≈ 5.8×10−11 yr−1.

Determining Lucy’s age

In 1974, a fossil of Australopithecus afarensis (shown in Figure 4) was
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discovered in Ethiopia. This specimen, which was dubbed “Lucy,” marks
an important step in understanding human evolution because at the time of
its discovery, it was the earliest known species to show evidence of bipedal
locomotion. Because Lucy was found in an area that was rich in volcanic
rock, potassium-argon dating was an ideal method for determining Lucy’s
age (Aronsen 1977).

Unfortunately for us, real-world K-Ar dating data are generally not neatly
presented in the form of NAr and NK. Instead, geologists will measure a con-
centration of 40Ar in mol/g and a weight percent of K2O. These data must
be used to identify the number of 40Ar and 40K nuclei in the sample. In
this part of the problem, we will look at such measurements from an actual
paleontological specimen as reported in Aronsen (1977) in order to determine
its age.

Figure 4: The remains of Lucy, a specimen of Australopithecus afarensis.

(F) Using the table of 40Ar and K2O measurements below (Aronsen 1977),
obtain an estimate for Lucy’s age. Be sure to explain the steps you take to
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obtain your answer. Since each sample is taken from the area in which Lucy
was found, we expect each sample to give you roughly the same answer; you
will need to take the mean of the ages of each sample to obtain an estimate
for Lucy’s age.

Assume that each sample has a total mass of 1 g. Also, note that not all of
the potassium in the sample will be the isotope 40K, so you will need to use
the ratio of 40K to total potassium,

40K
Ktotal

≈ 1.2× 10−4. Additionally, use the

decay constant λ ≈ 5.8× 10−11 yr−1.

Table 1. Outcome of measurements of potassium and argon for dating the
rocks in the vicinity of Lucy.

Sample Number 40Ar× 10−12 mol/g wt.%K2O
1 2.91 0.657
2 3.18 0.755
3 3.08 0.680

Reactions of the form
A→ B. (14)

are ubiquitous in the natural world. Thus far, we examined these equations
in the context of radioactive decay, a phenomena central to biology because
it provides a way of understanding biological evolution. Part of the intention
of this problem is to illustrate the broad reach of these reactions in problems
ranging from the dating of incredibly important fossils such as the famed
Lucy to the molecules of vision.

(G) Apply the results from your analysis of radioactive dating to now write
an equation for the decay of 13-cis-retinal to all-trans-retinal, as is illustrated
in Figure 5. The half-life of this reaction is τ = 2 s. Make sure you write
down a formal relationship between the rate constants to use in your rate
equation and the half-life of the reaction.
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Figure 5: Different views of the isomerization process. (A) Schematic of an
isomerization process where species A is decaying into species B. In this case,
we use the two forms of retinal to characterize the process. (B) Schematic of
the change in the populations of the two species over time.
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