
BE/APh161: Physical Biology of the Cell
Homework 4

Due Date: Wednesday, February 2, 2022

“We must travel in the direction of our fear.” - John Berryman

1. Laws of Cellular Growth Dynamics.

Much of our understanding of the natural world is couched in the language
of the subject now known as “dynamical systems.” In a nutshell, the idea is
to write down equations that tell us how some variable(s) of interest change
in time. Often, this ends up being written in the form of coupled differen-
tial equations. Perhaps the most important and simplest of such dynamical
systems is the law of exponential growth (or decay), relevant to thinking
about the early stages of growth of a culture of cells, for example. In my
recorded vignette “Laws of Cellular Growth,” I give a brief introduction to
the way we can write dynamical equations that describe the evolution of
the size of a population of cells (N(t)) as a function of time. In this prob-
lem, you are going to revisit the discussion I give there by solving for the
dynamics of a population of bacterial cells both analytically and numerically.

(a) In this first part of the problem, write down and justify the differential
equation for a population of dividing bacteria that is not limited by nutrient
availability. Write an analytic solution. In addition, write a code in Python
that integrates the equation over time. The basic idea for solving a differential
equation of the form

dx

dt
= f(x, t), (1)

is time stepping. Here we propose you use the most naive method which
instructs us to write the solution at time t as

x(t) = x(t−∆t) + f(x, t−∆t)∆t, (2)

where the time step ∆t is much smaller than any time scale in the system.
The structure of for loops permits us to solve this numerically for any “well
behaved” f(x, t). Use this algorithm to solve your growth equation numer-
ically and plot your numerical solution on the same graph as the analytic
solution.
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(b) The logistic growth equation is a phenomenological way of curbing unchecked
growth and is written as

dN

dt
= kN

(
1− N

K

)
, (3)

where K is the so-called carrying capacity of the population. As in part (a),
find an analytic solution for this equation and then find a numerical solution
as well. Estimate the parameters relevant to your solution by thinking about
a saturated bacterial culture. Comment on the meaning of the carrying ca-
pacity.

2. Fluorescence Recovery After Photobleaching by Pencil and Pa-
per and by Computation.

NOTE: relevant vignettes to watch are those about diffusion.

In this problem, we are going to consider a “one-dimensional” cell. Of course,
this sounds contrived, but really we are saying that the fluorescence only de-
pends upon a single coordinate. We will consider the long axis of bacterial
cells as the region to be photobleached. So, we will think of a region of length
2L = 4 µm that initially has uniform fluorescence. We then photobleach (i.e.
destroy the fluorescence) between −a and a, with a = 0.5 µm. Consider the
concentration in the unbleached region to be c0 = 1 µM , and let the diffusing
molecules have a diffusion coefficient of 10 µm2/s. For each section below,
we will use a different approach to working out the dynamics of the recovery
process.

(a) FRAP by coin flips. In this part of the problem, you are going to write
a simulation code that takes random walkers that start either in the region
−L to −a or a to L and flip coins and let them jiggle around. For each such
walker, the only rule you will need is that if on a given flip they try to leave
the region from −L to L, you will reflect them off the walls. The goal is to
do 100s of such simulations and then plot the concentration as a function
of position for different time points. After one time step, almost all of the
walkers will be in the unbleached regions. But over time, more and more
molecules will have ventured into the photobleached region. Your goal is to
get the full profile of the independently diffusing molecules. Make plots of the
concentration as a function of the number of steps. If the lattice parameter
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you use is d = 40 nm, this will mean that you have 100 such lattice points.
You can reconcile your simulation time step, the lattice parameter and the
diffusion coefficient through the relation D = d2/τ , where τ is the time step.

(b) FRAP by math. For this part of the problem, I am going to explicitly walk
you through the steps and your job is to really carefully demonstrate that
everything works and holds together, showing all of the steps. To compute
the recovery curves, we first solve the diffusion equation

∂c

∂t
= D

∂2c

∂x2
(4)

for the concentration of fluorescent molecules c(x, t), with the initial concen-
tration after photobleaching given by

c(x, 0) =


c0 for − L to − a
0 for− a to a
c0 for a to L.

(5)

We also impose the boundary condition ∂c/∂x = 0 for x = −L and x = L,
which says that the flux of fluorescent molecules vanishes at the boundaries
of the one-dimensional cell (no material flows in or out). This mimics the
real-life situation with fluorescent proteins confined to the volume of the cell,
to the cell membrane, or to some other subcellular structure.

To solve the diffusion equation with the prescribed initial and boundary
conditions, we begin by expanding the concentration profile c(x, t) in terms
of cosine functions using “Fourier series,”

c(x, t) = A0(t) +
∞∑
n=1

An(t) cos

(
x

L
nπ

)
. (6)

This expansion guarantees that the boundary conditions are met, namely
each of the functions An(t) cos(xnπ/L) has vanishing first derivatives with
respect to x at x = ±L. Furthermore, since the initial concentration profile
takes the same values for positive and negative x, it is readily expanded in
cosine functions since the concentration profile is symmetric about the origin.
The solution of the diffusion equation now boils down to finding the func-
tions An(t) such that both the diffusion equation and the initial condition
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are satisfied.

To proceed, we substitute the series expansion of c(x, t) into the diffusion
equation. This yields

∂A0

∂t
+
∞∑
n=1

∂An(t)

∂t
cos

(
x

L
nπ

)
= D

∞∑
n=1

[
−An(t)

n2π2

L2

]
cos

(
x

L
nπ

)
, (7)

which, due to the orthogonality property of the cosine functions for differ-
ent n (see Equation 11 below), turns into a set of independent differential
equations,

∂A0

∂t
= 0

∂An

∂t
= −Dn2π2

L2 An(t) (n ≥ 1)
(8)

Show that the solution to each one of these (infinite in number) equations is
an exponential function

An(t) = An(0)e−(Dn
2π2/L2)t, (9)

which when substituted into Equation 6 gives

c(x, t) = A0(0) +
∞∑
n=1

An(0)e−(Dn
2π2/L2)t cos

(
x

L
nπ

)
. (10)

Make sure you demonstrate this. The final piece of the puzzle is the deter-
mination of the constants An(0).

To compute the initial amplitudes of the cosine functions, we resort to
the orthogonality property of these functions, namely,∫ L

−L
cos

(
x

L
nπ

)
cos

(
x

L
mπ

)
dx = Lδn,m. (11)

In particular, multiply both sides of Equation 10 by cos(mπx/L) for different
values of m, and then integrate over x to derive the equations

A0(0) = 1
2L

∫ L
−L c(x, 0)dx

An(0) = 1
L

∫ L
−L c(x, 0) cos

(
x
L
nπ
)

dx (n ≥ 1)
(12)

for the initial amplitudes. Substitute the initial concentration profile, c(x, 0),
into these equations, and perform the integrals, to show that

A0(0) = c0
L−a
L

An(0) = −2c0
sin(nπa/L)

nπ
(n ≥ 1)

(13)
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Put these results back into the derived formula for c(x, t), Equation 10 and
show that the solution for the concentration profile as a function of time is
given by

c(x, t) = c0

[
1− a

L
−
∞∑
n=1

2 sin(nπa/L)

nπ
e−(Dn

2π2/L2)t cos

(
x

L
nπ

)]
. (14)

Make a plot of your resulting concentration profile as a function of time
for several different times. Also, make sure you illustrate how your result
depends upon how many terms you keep in the series. Obviously, you can’t
do an infinite number of terms. Note that at long times, such that t is
much greater than L2/D, which is the diffusion time for a box of length L,
the concentration profile tends to a constant value equal to c∞ = c0(1 −
a/L). This can be understood in a very simple way. Namely, at long times,
we expect diffusion to make the concentration profile uniform over the 2L
interval. Show that the fact that the number of fluorescent molecules does
not change in time leads to the equation

c∞(2L) = c0[2(L− a)], (15)

which gives the computed value of the concentration at long times.

(c) FRAP by chemical master equation. In the vignette entitled ”Diffusion:
Master Equation” I wrote down the evolution equation

p(x, t+∆t) = p(x, t)+(k∆t)p(x−a, t)+(k∆t)p(x+a, t)−(k∆t)p(x, t)−(k∆t)p(x, t).
(16)

In that vignette, I argued that the equation as written is the basis of a very
nice way to numerically investigate diffusion problems. Here you will con-
sider a 4 µm long cell that is discretized into 100 boxes. As you did in the
previous two parts of the problem, you are going to integrate the chemical
master equation by starting with the initially bleached profile and then plot-
ting the concentration as a function of time.

3. The Standard Candle: Counting Proteins with Partitioning
Statistics.

NOTE: to do this problem, the vignettes “Biological puzzles and probabilistic
thinking,” “Carboxysomes and binomial partitioning” from the 2021 edition
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of the course will be helpful.

(a) Begin by reading the paper by Rosenfeld et al. entitled “Gene Regula-
tion at the Single-Cell Level” (posted on the website with the homework)
and write a one paragraph commentary on the paper with special reference
to how they used the binomial partitioning as a way to count repressor pro-
teins. What is the experiment they did and what were they trying to learn?

In the rest of the problem we work out for ourselves the ideas about binomial
partitioning introduced in the Rosenfeld et al. paper in order to consider the
concentration of mRNA or proteins as a function of time in dividing cells.
In particular, the point of this problem is to work out the concentration of
mRNA or protein given that we start with a single parental cell that has N
copies of this mRNA or protein (in the experiments of Rosenfeld et al. this
is a fluorescently-labeled transcription factor). In the Rosenfeld experiment,
at some point while the culture is growing, the production of the protein
is stopped by providing a chemical in the medium and then the number of
copies per cell is reduced as a result of dilution as the cells divide.
Interestingly, this problem opens the door to one of the most important
themes in physics, namely, that of fluctuations. In particular, as the cells di-
vide from one generation to the next, each daughter does not really get N/2
copies of the protein since the dilution effect is a stochastic process. Rather
the partitioning of the N proteins into daughter cells during division follows
the binomial distribution. Analyzing these fluctuations can actually lead to
a quantification of the number of copies of a protein in a cell.

(b) If we think of the N copies of the protein as being divided between the
two daughters with N1 going to daughter 1 and N − N1 going to daughter
2, write the probability distribution p(N1, N). Next, work out the expected
fluctuations in the partitioning process after each division by noting that the

fluctuations can be written as
√
< (N1 −N2)2 >, where N1 and N2 are the

number of proteins that end up in daughter cells 1 and 2, respectively. Show

that
√
< (N1 −N2)2 > =

√
N . When I do this calculation, I find it conve-

nient to write N2 = N − N1. Basically, this reduces the problem to having
to calculate 〈N1〉 and 〈N2

1 〉 since once you have those two quantities you can

evaluate
√
< (N1 −N2)2 >.
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(c) Next, look at the Rosenfeld paper and explain how measuring fluorescence
variations can be used to calibrate the exact number of copies of the fluores-
cent protein in a cell. Specifically, assume that the fluorescence intensity in
each cell can be written as I = αN , where α is an as-yet unknown calibration
factor and N the number of proteins in the cell. Explain what this equation
means and why you think it is justified. Derive an expression relating I1, I2
and Itot using the result of part (b). Make a plot of

√
< (I1 − I2)2 > versus

Itot and explain how to get the calibration factor α from this plot.

(d) Now we are going to repeat the Rosenfeld experiment numerically in
order to fit the calibration factor. Consider a fluorescent protein such that
the calibration factor between the intensity and the number of fluorophores
is 50, that is I = 50N . Generate intensity data by choosing N1 + N2 =
10, 50, 100, 1000 and 5000 and for each case, “partition” the proteins from
the mother cell to the two daughters 100 times (i.e. as if you are looking at
100 mother cells divide for each choice of the protein copy number). Then,

make a plot of the resulting
√
< (I1 − I2)2 > vs Itot just as we did analyti-

cally in the previous problem. What I mean is that you need to make a plot
of all of your simulation results. Then, do a fit to your “data” and see how
well you recover the calibration factor that you actually put in by hand. Plot
the fit on the same graph as all of the “data”.
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