
BE/APh161: Physical Biology of the Cell
Homework 8

Due Date: Wednesday, March 18, 2020

“How can the events in space and time which take place within the spatial
boundary of a living organism be accounted for by physics and chemistry?”
- Erwin Schrödinger What is Life?

This final homework is a celebration of physical biology, drawing its inspira-
tion from disparate puzzles about the living world while trying to showcase
some of the many key principles that have come up in the course. What
are those key principles? 1) Wilson, order of magnitude thinking, street
fighting-mathematics and figuring out estimates about the world around us
without looking anything up. I argue that this is a skill that transcends this
course. Rather, it is one of the key tools that we should all carry around as
our route to answering the question: what sets the scale of X? 2) The great
probability distributions as a window onto mechanism. We have seen over
and over that probability serves as the natural language of biology, whether
in thinking about the waiting time for the next step of a molecular motor or
the distribution of mRNA molecule counts in a population or the frequency
of alleles. 3) Physical biology superpowers - the key protocols of dynamics,
continuum theory and statistical mechanics. One of our most important vi-
sions was that of field theory, one of the greatest inventions in the history of
science.

1. Physical Biology of Viruses.

Since their discovery over 100 years ago, viruses have always occupied a
central place in biology. One of the debates that has swirled around their
existence is the simple question of whether or not they are “alive”. During
the Max Delbrück era, he was interested in finding the “hydrogen atom” of
life and found bacterial viruses (the so-called bacteriophages - literally, bac-
teria eaters) would serve perfectly in that capacity. Several years ago when I
was teaching this course, the big news was Zika virus and before that a very
scary Ebola outbreak. This year, we are faced with increasingly alarming
news of the coronavirus, COVID-19. My own switch from condensed matter
physics to biology was partly elicited by an amazing paper from the group of
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Figure 1: Sizes of viruses. The table considers both RNA and DNA viruses
and reports both the size of the virion and the length of the genome.

Carlos Bustamante at UC Berkeley who had figured out a way to measure
the build up of pressure as DNA is packed into the bacteriophage capsid. In
this problem, we take a random walk through the physical biology of viruses,
honoring them as one of the most sophisticated, interesting and scary parts
of the biological world.

(A) Let’s begin by considering the data storage capacity of viruses. Choose
an RNA virus (such as influenza, HIV or COVID-19) and a bacteriophage
(such as lambda or T4) and compute the physical data storage capacity when
their genomes are packed within the virion. Figure 1 is a resource that will
allow you to understand viral sizes. I am talking about units of bits/µm3.
Compare this to the 4 TB hard drive that one uses to back up a laptop. How
many viruses would it take to store the entirety of the Library of Congress?
How much volume would all of those viruses take up?

(B) One of the most important properties of a given infection is the so-called
“burst size”, the number of new viruses produced per infected cell. One of the
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1 µmnascent viruses

empty capsids following infection

Figure 2: Synthesis of new viruses in an infected bacterium.

original hypotheses (which you will refute here) for what controls the burst
size is the available volume within the host cell. Given that for a typical
bacteriophage infection the burst size is roughly 100 viruses, what fraction
of the volume is taken up by the newly synthesized viruses? Figure 2 shows
an electron microscopy image of an infected bacterium.

(C) A simple model of viral spread through a population is the so-called
SIR model, where S refers to susceptible, I refers to infected and R refers
to recovered-removed. There is a long tradition running all the way back
to the Greeks of trying to understand the population dynamics of disease
spread. In 1760, the great Daniel Bernoulli mused on the topic of small pox
and vaccinations as shown in Figure 3. If the rate of infection is given by
r, and the rate of recovery is given by α, write three coupled differential
equations for the dynamics of S, I and R. Choose reasonable values of those
parameters based on looking at the current story of Coronavirus. Consider
a closed and isolated city such as Wuhan, China (that is, make the clearly
overly optimistic assumption that no one leaves or enters the city) and solve
for the three variables as a function of time and plot them together on a
common plot such as that shown in Figure 5. Explain the phase portrait in
detail that is shown in Figure 4. Specifically, find an analytic expression for
the parameter ρ which is the critical population size such that dI/dt > 0.

(D) How are viruses transmitted? Three key routes are through the respira-
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Figure 3: Paper from Daniel Bernoulli, 1760 in which he considered a dy-
namic model of small pox.
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Figure 4: Phase portrait in the SIR model. The total population size is N .
The number of susceptible individuals plus the number of infected individuals
at t = 0 is equal to the population size. Thus, all subsequent evolution of
the population must exist within the triangle since S(t) + I(t) + R(t) = N .
ρ is the critical population size for the occurrence of an epidemic.
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Figure 5: Influenza data from a boarding school for boys reported in The
Lancet in 1978.

tory tract, the digestive tract and the reproductive tract. In all three cases,
our bodies are set up with a number of different tricks to resist infection
including mucus and ciliary transport in our respiratory and digestive tracts
and harsh conditions in our digestive tract such as low pH. The current coro-
navirus epidemic is apparently passed through the respiratory tract and in
this part of the problem, we appeal to Figure 6 for a look at the distribu-
tion of droplet sizes. The claim is that a strong sneeze or cough can contain
more than 10,000 such droplets. How much volume is that? Does that make
sense? Estimate how many influenza or coronavirus particles will be carried
in a typical droplet. I have not done all of these estimates carefully enough
for my own satisfaction so this part of the problem is an adventure for all
of us. A very interesting source of information on this is the work of Prof.
Lydia Bourouiba from MIT who does visualization experiments on humans
coughing.

2. Waiting time distributions.

One of the big messages of the course is the deep insights that come from a
probabilistic assessment of biological systems. Our slogan might be: mech-
anistic information is hidden in the probability distributions. The binding
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Figure 6: Distribution of droplet sizes after a sneeze.
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problems that we worked out for ligands and receptors can be thought of as
giving rise to a time series that looks like a so-called telegraph signal, going
back and forth between 0 and 1. Because the time of switching between
bound and unbound is very fast compared to the time spent in those two
states, the occupancy of the receptor is either 0 or 1.

(A) In light of this, it is interesting to explore the distribution of waiting times
that we spend in the unoccupied or occupied state. To that end, we can use
the interpretation of rates as follows. Consider that the receptor is currently
occupied and we start a stopwatch to measure how long until a ligand hops
off of it. In each instant ∆t, as shown in Figure 7, there is a probability
p+ = koff∆t of hopping off of the receptor. The goal of our calculation is to
work out the probability that the ligand will fall off after a time T = n∆t,
where n is the number of time steps we have to wait until the ligand falls
off. To do so, we imitate the figure by noting that to fall off at time T this
means that the ligand will have to have not fallen off during all the previous
steps. Since we have discretized time into slices of length ∆t, show how to
write the probability as a product of n independent probabilities. Use the
insight that

limn→∞(1− x/n)n = e−x (1)

to show that the probability that the ligand falls off between time T and
T + ∆t is given by

p(T )∆t = koffe
−koffT∆t. (2)

Show that this probability distribution is properly normalized and then com-
pute the average waiting time

〈t〉 =
∫ ∞
0

tp(t)dt. (3)

(b) When we think about molecular motors, we will be interested in molecules
that transition between more than two states, but have exponential waiting
times in each of those states. Consider the case of a molecular motor that
has two steps, each with a waiting time distribution that is exponential like
you worked out in the first part of the problem. Using that, work out an
expression for the waiting time distribution for the composite process made
up of those two steps. That is, once again find p(T ) given that both t1 and t2
are exponentially distributed, where t1 is the waiting time for the first step
and t2 is the waiting time for the second step. The key point in formulating
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Figure 7: Computing the waiting time distribution. (A) The possible micro-
scopic trajectories that can occur during a time step ∆t. (B) Schematic of
the states during all the time steps leading up to the ligand falling off of the
receptor.

your thinking is that you must respect the constraint that t1 + t2 = T . Make
a plot of this kind of distribution and comment on what it means.

3. MWC Ion Channel: One Equation that Rules Them All

In class, we introduced the idea of allosteric proteins as those that have a
regulatory binding site that cause the protein to switch between inactive and
active states. In this problem, we will take the same ideas developed in class
and apply them to the so-called ligand-gated ion channels. These channels
are relevant in contexts ranging from our neuromuscular junctions to the
photoreceptors in our eyes to olfactory neurons. Figure 8 shows two classic
examples of these channels.

(a) Write a paragraph that summarizes the function of the two ion channels
shown in Figure 8. The point here is just to make sure you have a little un-
derstanding of their physiological function before we start working out their
statistical mechanical properties.

(b) Make a diagram with your version of the statistical mechanics protocol
showing the states and weights for the nAChR ion channel. Make sure you
explain all of your notation for the parameters that appear here.
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Figure 8: Key examples of ligand-gated ion channels. (left) Nicotinic acetyl-
choline receptor, revealing its heteropentameric structure with two binding
sites for acetylcholine. (right) cGMP-gated ion channel. These channels have
four cGMP binding sites.
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(c) Write an equation for the probability that the channel is open popen(c),
where c is the concentration of acetylcholine.

(c) Work out the leakiness, dynamic range and the EC50. Leakiness refers
to the probability that the channel is open in the absence of ligand and can
be thought of as pmin, the minimum probability the channel is open. Dy-
namic range refers to the difference between pmax and pmin, where pmax is
the probability of being open at saturating concentrations of ligand. Find
explicit expressions for both pmin and pmax and then use their difference to
obtain the dynamic range. EC50 is the concentration of ligand at which the
channel is halfway between pmin and pmax. Write expressions for each of the
four properties listed above. Then, simplify your expressions for these vari-
ous properties in the limit where KI/KA >> 1.

(d) Figure 9 shows data for the wild-type nAChR ion channel from the lab-
oratory of our own Prof. Henry Lester. With your TA, use Digitizeit to
extract the data and then make a fit using the MWC model you worked out
earlier in the problem. This is Figure 1B of the paper by Labarca et al.
included with the homework. Note that unfortunately, they chose to plot
“normalized current” rather than popen(c). As a result, your fit will have to
be to the normalized current given as

normalized current =
popen(c)− pmin
pmax − pmin

. (4)

I am excited for you to learn how to use Digitizeit because it is liberating:
with it, you can take figures from anyone’s papers and grab their experi-
mental data and export it into a spreadsheet so that you can unleash your
theoretical analysis on it.

4. Setting up the fly body plan.

One of the most important ideas for how positional information arises in
multicellular organisms is the idea of a morphogen gradient (another serious
contender is a Turing pattern). In this problem we will use a steady-state
solution to the reaction-diffusion equation for Bicoid to understand how the
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Figure 9: Ion channel currents as a function of ligand concentration.
(Adapted from Labarca et al., Nature, 1995).

exponential profile shown in Figure 10 is set up. Stated simply, the develop-
ment of the Bicoid gradient can be thought of as resulting from a competition
between the diffusion of Bicoid protein that is synthesized at the anterior end
of the embryo (the mother deposits localized bcd mRNA there as shown in
Figure 11) and the degradation of this protein while it is diffusing around.

(A) Give a brief description (a paragraph or less) of the Bicoid gradient in
Drosophila and how it is relevant to fly development. Further, to get a feel-
ing for the Bicoid gradient, redraw the Bicoid profile shown in Figure 10 in
terms of the absolute number of Bicoid proteins per nucleus. You can make
the drawing by hand or plot some approximate curve using Python. Note
that there are two profiles, one for dorsal and one for ventral values of Bi-
coid. For the purposes of your plot, you can approximate this data as one
averaged curve. To make this estimate, you will need to use the information
about nuclear sizes in nuclear cycle 14 provided in Figure 4C of Gregor2007a
(provided on the course website).

(B) Make a derivation of the reaction-diffusion equation and use it to justify
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Figure 10: The Bicoid morphogen. The Bicoid activator is distributed in an
exponential gradient. (Adapted from F. Liu et al., Proc Natl Acad Sci USA
110:6724 2013.)
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bicoid mRNA

Figure 11: bicoid mRNA distribution. Using single molecule mRNA FISH,
the localization of individual bicoid mRNA molecules at the anterior end of
the embryo can be revealed. (Adapted from Petkova et al. (2014), Current
Biology 24:1283.)
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the form
∂Bcd(x, t)

∂t
= D

∂2Bcd(x, t)

∂x2
− Bcd(x, t)

τ
. (5)

Make sure you explain carefully where all of these terms come from. To
do so, begin the usual way by considering a one-dimensional concentration
profile and by finding the rate of change of number of Bicoid molecules in
the box at position x by considering the flux into (Jm(x − ∆x/2)) and out
of ((Jm(x+ ∆x/2)) the box using arguments like those made in class. How-
ever, you need to generalize that treatment by accounting for the fact that
a Bicoid molecule has the probability r∆t of degrading in time interval ∆t,
where r ≈ 1/τ , where τ is the degradation time.

(C) Now solve this equation in steady-state by finding the general solution
subject to the boundary condition that J(0, t) = j0 and J(L, t) = 0. Make
sure you explain what these boundary conditions mean relative to the biology
of the problem. Suggest approximations that can be made to simplify the
result, specifically, can you exploit the fact that the embryo is much larger
than the decay length to simplify the solution?

(D) Describe the observed concentration profile of Bicoid along the anterior-
posterior axis of the fly mathematically. What is the functional form? Exper-
imentally, Thomas Gregor has found that the Bcd profile is an exponential
of the form Bcd(x) = Bcd0e

−x/λ, does that jibe with your solution?

(E) The paper by Drocco et al. uses a photoactivatable fluorescent protein
to measure the lifetime of the Bicoid protein. Read the paper (available on
the course website) and explain the technique in one paragraph. You might
find it useful to draw a schematic plot such as shown in Figure 1f of the paper.

(F) What is the value of the decay constant λ for the gradient shown in
Figure 10? To estimate this magnitude, you can just fit “by eye” by plotting
your solution for different values of Bcd0 and λ. Now, compare the measured
λ value with that you can predict by plugging in realistic values of D, τ into
your solution. To make this possible, read the papers by Abu-Arish et al.
and Drocco et al., provided on the course website.

(G) One of the most important and interesting ideas to come out of the idea
of positional information contained in morphogen gradients was the so-called
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French flag model which we will explore here. This model posits that the
Bicoid concentration dictates the position of the cephalic furrow. As seen in
Figure 12, the idea of the model is that boundaries in the embryo are deter-
mined by threshold values of the morphogen. The idea of the model is that
if the gene dosage gets changed, as seen in the mutant profile, the bound-
ary will still occur at the same value of the morphogen. That hypothesis is
enough to determine the shift in boundary position with gene dosage.

To test this model, we will analyze several experiments (Nusslein-Vohlhard
and Driever and Liu et al.) where they measured cephalic furrow position as
a function of different dosages of the bicoid gene in embryos. An exponential
gradient of Bicoid is described by

Bcd(x, λ, α,Bcd0) = Bcd0 α e
−x/λ, (6)

where x is the position along the embryo, Bcd0 is the Bicoid concentration at
x = 0, λ is the decay constant of the gradient and α is the Bicoid dosage, with
α = 1 corresponding to the wild-type. Work out a model for the position of
the cephalic furrow xnew as a function of the gene dosage α, the morphogen
gradient decay length λ and the position of the wild-type cephalic furrow,
xCF .

(H) Note that, given a measured xCF ≈ 32% of the embryo length, your
model has no free parameters. Compare the prediction from your model
with the data for xnew vs. α obtained by Nusslein-Vohlhard, and by Driever
and Liu et al.. Comment on how well your prediction matches the data that
is provided with the homework. What could be going on?

5. The Protein-mRNA Ratio.

In this problem we go beyond the calculation on mRNA production we did in
class, and think about how transcription and translation shape the protein-
to-mRNA ratio inside cells.

(A) In class, we described the temporal evolution of the number of mRNA
molecules using the equation

m(t+ ∆t) = m(t) + rm∆t− γmm(t)∆t. (7)
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Figure 12: Concept of the French flag model.
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Here, m(t) is the number of mRNA at time t, rm is the rate of mRNA pro-
duction, and γm is the mRNA decay rate. Write the corresponding equation
for the number of protein molecules given a rate of protein production per
mRNA of rp and a protein decay rate γp. Make sure to incorporate the fact
that the number of mRNA molecules present will determine how many pro-
teins are produced in a time interval ∆t.

(B) Calculate the ratio of protein to mRNA in steady state, pSS/mSS and
show that it is given by rp/γp. Find typical values for the various model
parameters in E. coli and estimate the ratio of proteins to mRNA molecules.
How do your numbers compare to those measured in Figure 3C of Taniguchi
et al., which is provided on the course website?

(C) Using flies with different dosages of Bicoid-GFP, Petkova et al. measured
the relation between the number of bicoid mRNA molecules deposited by the
mother, and the resulting number of Bicoid proteins. Read their paper (avail-
able on the course website) and make sure you understand how their Figure 3
is generated. Assuming that Bicoid-GFP is in steady state, use Figure 3 from
Petkova et al. to estimate the ratio rp/γp. Use the value for the degradation
rate obtained by Drocco et al. discussed in Problem 3 in order to calculate rp.

N. Your Turn.

In this final problem, I want you to construct a thoughtful syllabus for how
you would teach a course on Physical Biology. You have ten weeks, two
classes of 90 minutes each per week. Make sure to give a sense of whether
your homeworks will involve computation, whether you will give an exam,
etc. But more importantly, what is the content? What do you want students
to leave the course with? What are the top five skills you want them to leave
with? What are the top five insights you want them to leave with? You have
20 lectures, so I want to hear what each and every lecture will be about.
How much powerpoint? How many calculations on the blackboard. For this
problem, send a pdf (nothing but pdf accepted and zero credit for stuff like
powerpoint or word files) to Vahe and Rob.
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