
BE/APh161: Physical Biology of the Cell
Homework 7

Due Date: Wednesday, March 4, 2020

“How can the events in space and time which take place within the spatial
boundary of a living organism be accounted for by physics and chemistry?”
- Erwin Schrödinger What is Life?

1. Three Routes to Ligand-Receptor Binding

(A) Several weeks ago in class and then in homework, we derived the diffusion-
limited on rate as the speed limit for chemical reactions. In this problem,
we are going to use that analysis as a jumping off point for thinking about
ligand-receptor binding problems. Imagine a situation in which we have a
receptor fixed at some point in space as shown in the top right panel of Fig-
ure 1. Write a rate equation for the concentration of ligand-receptor pairs
in terms of the concentration of ligands and receptors. Given that equation,
derive an expression for the dissociation constant

Kd =
[L][R]

[LR]
(1)

in terms of the on and off rates. Make sure you explain the dimensions of
your on and off rates and hence, the dimensions of Kd.

(B) A second route to considering ligand-receptor interactions is to think of
binding probabilistically with the probability that the receptor is occupied
given by

pbound =
[LR]

[R] + [LR]
. (2)

Given the definition of the dissociation constant introduced in the previous
part of the problem, find a simple expression for pbound([L]) that is only a
function of the concentration of ligand. (NOTE: for now, we are ignoring
the subtlety that the amount of total ligand and free ligand are not actually
the same, though in the case considered here with a single receptor we have
somewhat finessed that point.) Make a plot of pbound([L]) as a function of [L]
and comment on where Kd belongs on the axes.
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Figure 1: Three treatments of ligand-receptor binding.
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(C) Our third route to ligand-receptor binding is to use statistical mechan-
ics. Imitate the statistical mechanics protocol given in class by showing the
states, energies, multiplicities and weights for a lattice consisting of Ω lattice
sites and L ligands. Find an expression for pbound in terms of the difference
in energy of a ligand when in solution, εsol and the energy when the ligand
is bound to the receptor, εb. Consider that the lattice sites in our lattice
model have size v and hence that the concentration is [L] = L/Ωv and use
that insight to arrive at an expression for the dissociation constant in terms
of the microscopic parameters. Do this by comparing the results of this part
of the problem with your result from part (B).

2. Digging deeper into the continuum field theory of a Newtonian
fluid.

(A) In class, we exploited the continuum theory protocol to derive the Navier-
Stokes equations. In this part of the problem, repeat that derivation by
explaining how we obtain the equation of force balance

ρ(
∂vi
∂t

+ vj
∂vi
∂xj

) =
∂σij
∂xj

. (3)

Then, using the constitutive equation for the Newtonian fluid, σij = −pδij +
2ηDij, derive the Navier-Stokes equations themselves,

ρ(
∂vi
∂t

+ vj
∂vi
∂xj

) = − ∂p

∂xi
+ η∇2vi. (4)

Explain all the steps in the derivation including any comments about mass
conservation and the continuity equation.

(B) One of the most important superpowers of applied mathematics and
physics is the act of rewriting the equations we use to describe the world
around us in dimensionless form. This is not some trick or afterthought.
Rather, it is about finding the natural variables of some problem of interest.
For fluids, that natural variable is the Reynolds number and in this part of
the problem we will see how the Reynolds number emerges from the act of
writing the equations in dimensionless form. We introduce the “characteristic
length” L and the “characteristic velocity” U , allowing us to then define four
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dimensionless variables, namely, a dimensionless spatial coordinate

x∗ =
x

L
, (5)

a dimensionless velocity of the form

v∗ =
v

U
, (6)

a “characteristic pressure” p∗

p∗ =
L

ηU
p (7)

and the “characteristic time”

t∗ =
t

(L/U)
. (8)

Explain why each one of these is dimensionless. We use these definitions to
rewrite the Navier-Stokes equations in dimensionless form. The way to do
this is to take each term in the Navier-Stokes equation and to write them
in dimensionless terms. For example, the first term on the left side is of the
form

ρ
∂vi
∂t

= ρ
∂(v∗iU)

∂t∗
dt∗

dt
=
ρU2

L

∂v∗i
∂t∗

(9)

Using this strategy, show that you can rewrite the Navier-Stokes equations
as

∂v∗i
∂t∗

+ v∗j
∂v∗i
∂x∗j

= − 1

Re

∂p∗

∂x∗i
+

1

Re
∇2

∗v
∗
i , (10)

where my notation with ∇2
∗ means spatial derivatives are with respect to the

dimensionless variable x∗. We have defined the Reynolds number as

Re =
ρLU

η
. (11)

(C) Given the definition of the Reynolds number, estimate the Reynolds
numbers associated with a blue whale, a human swimmer, a flying bar-tailed
godwit, a swimming Stentor cell, an E. coli cell and a 1 micron bead in an
optical trap being dragged by a molecular motor such as myosin or kinesin.
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(D) Estimate the drag force on a 1 micron bead being pulled along by a
molecular motor using the Stokes drag, Fdrag = 6πηav, where a is the size of
the bead and η is the viscosity. How does the force due to the drag compare
to the stall force of the motor?

(E) One of the conditions we invoked in our discussion of the Newtonian fluid
was that of incompressibility, captured mathematically as

∂vi
∂xi

= ∇ · v = 0. (12)

In this part of the problem, we are going to use simple physical reasoning
to explore the legitimacy of this condition. Our starting point is the idea
that we can write the change in the pressure of the fluid due to a change in
volume as

∆p = B
∆V

V
, (13)

where B is the so-called bulk modulus with a value of B = 2.2 GPa for
water. If we subject our water to a change in pressure of 1 atm, what is the
corresponding change in volume and what does your estimate tell you about
the incompressibility condition?

(F) There is an alternative way for us to explore the meaning of the Reynolds
number as the ratio of the kinetic energy to the viscous energy dissipation.
As shown in Figure 2, we can make a simple analysis by considering the
swimming of a fish. Consider a fish of size L swimming at speed v. Make
a scaling estimate of the kinetic energy of the fluid parcel that is moved by
the fish - this is not about factors of 2 or 1/5 or anything like that. Just
construct a formula that depends upon the density of water ρ, the speed v
and the size scale L that captures the kinetic energy of the fluid parcel. Our
next task is to construct the denominator by making a scaling estimate of
the energy dissipation due to viscous stresses. First, using the viscosity η,
the speed v and the size scale L, find an order of magnitude expression for
the viscous stress. This is a force per unit area. Turn that into a force scale
by multiplying by the relevant area over which these stresses act. Finally,
given that work = force×distance, work out the scaling of the viscous work.
By now constructing the ratio of these two terms, show that you recover
precisely the Reynolds number we had above.
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Figure 2: Getting a feeling for the Reynolds number.

3. A feeling for the numbers: stress in biology.

(A) One of the fundamental facts of life is changes in osmotic stress. To put it
bluntly, sometimes the bacteria in our guts are all of a sudden exposed to pure
water in a toilet bowl, resulting in a substantial hypoosmotic stress coming
from a concentration change as much as ∆c = 1 M. One simple equation of
state for the osmotic pressure that results is the so-called van’t Hoff equation
which says that the osmotic pressure is given by the ideal solution form

Π = ∆ckBT, (14)

where ∆c is the concentration jump across the relevant cell membrane. Work
out the stress in Pa units for an osmotic stress experiment.

(B) In class we discussed the phenomenon of cyclosis observed in cells such
as the algae Chara. In this part of the problem, your aim is to make an
estimate of the shear stresses that arise in the fluid medium within the cell.
As a reminder, look at Figure 3 to get a sense of the dimensions. Given these
structural details, and given that the flow speed at the outer radii is around
100 µm/s, make an estimate of the shear stresses within the cell. In addition,
evaluate the Reynolds number within one of these cells and use those insights
to simplify the Navier-Stokes equations to the form of the Stokes equations.
Here I am asking you to explain the simplification that emerges in the low
Reynolds number limit.
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Figure 3: The anatomy of the internodal cell of Chara. (Courtesy of Jan
Willem van de Meent)

4. Bacterial Foraging.

Work out problem 12.1 in PBoC2. This problem explores the very interesting
question of the relative importance of directed motion and diffusion.
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