
BE/APh161: Physical Biology of the Cell
Homework 5

Due Date: Wednesday, Feb. 12, 2020

“One of the principal objects of theoretical research in any department
of knowledge is to find the point of view from which the subject appears in
its greatest simplicity.” - Josiah Willard Gibbs

1. Elasticity, Hydrodynamics and Indicial Notation.

This problem aims to give you practice in thinking about indicial notation
and gives you a chance to think further about the ideas concerning elastic-
ity and hydrodynamics that we will spend several weeks on in class. A key
notational convenience that will be afforded us is the use of the summation
convention. The basic injunction is: sum over all repeated indices. So as to
gain familiarity with this convention, work out the following examples.

(a) Write out aibi as a full sum and give its standard interpretation in vector
analysis by writing it in vectorial form.

(b) The electric current density j is related to the applied electric field E
through the relation j = σE. Write this relation in indicial notation and
then do the sums. How many equations is this? Write them all out.

(c) The vector cross product can be written as ai = εijkbjck, where the Levi-
Cevita symbol is defined as ε123 = ε231 = ε312 = 1, ε132 = ε213 = ε321 = −1
and 0 otherwise. Another way of stating this that the Levi-Cevita symbol
is 1 for even permutations of ε123, -1 for odd permutations and zero for all
other cases. Using these conventions, show that the expression written in
summation convention notation yields the correct components of the vector
cross product.

(d) Write out ∂(ρvi)/∂xi by following the edict of the summation convention.

(e) Rewrite ∇p in indicial notation. The gradient in pressure will be impor-
tant to us when considering the Navier-Stokes equations.
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(f) Write out a · (b× c) in indicial notation.

(g) When we balance forces in continuum mechanics, we will be interested in
the divergence of the stress tensor. Write out ∂σij/∂xj using the summation
convention. How many equations is this? Write them all out.

(h) Write out
∂E1

∂x1
+
∂E2

∂x2
+
∂E3

∂x3
, (1)

in indicial form and in vectorial form using ∇.

(i) Consider the matrix equation a = Mb, where a and b are column vectors
with three components and M is a 3 × 3 matrix. Write out the rules for
matrix multiplication for this problem in indicial notation.

(j) ∂vi
∂xi

(write this in direct vectorial notation also).

(k) Given a matrix M, what is Mii? What is another way of writing this?
Consider the matrices A and B. Write the ijth element of the matrix AB in
terms of the matrix elements of A and B individually. Use indicial notation.

(l) In the Navier-Stokes equations one encounters terms like v · ∇v. Rewrite
this in indicial notation, using the summation convention.

(m) In linear elasticity, the stress tensor is of the form σij = Cijklεkl. Write
out the components of σ11 and σ12 of the stress tensor by exploiting the sum-
mation convention.

(n) The equilibrium equations for elasticity are written as

∂σij
∂xj

+ bi = 0. (2)

bi is the ith component of the “body force” (e.g. gravity). This is three
equations corresponding to i = 1, 2, 3. Write all three equations by using the
summation convention.
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(o) For the particular case of an isotropic, linear elastic solid, the elastic
modulus tensor is of the form

Cijkl = λδijδkl + µ(δilδjk + δikδjl). (3)

In this case, find an expression for the stress σij = Cijklεkl and the stored
energy density of the solid, W ({εij}) = 1

2
Cijklεijεkl. Write your expression

for the stress in both indicial and vector notation. Also, use this form for
the elastic modulus tensor to obtain the equilibrium equations (the so-called
Navier equations) by plugging your result for σij into

∂σij
∂xj

= 0. (4)

Note that we are looking at the particular case in which the body force has
been set to zero.

(p) The Navier-Stokes equations are of the form

ρ(
∂vi
∂t

+ vk
∂vi
∂xk

) = µ
∂2vi

∂xk∂xk
− ∂p

∂xi
. (5)

Write all three equations by exploiting what you know about the summation
convention. Also, write these equations in direct (vectorial) form.

2. Equation of Motion for Mean Cytoskeletal Filament Length

In class we discussed the rate equation protocol shown in Figure 1. Our
application of the protocol in class was to the problem of a constitutive pro-
moter and provided a dynamical equation for the average number of mRNAs
per cell as a function of time. In this problem, you are going to imitate that
analysis, but this time thinking about the average length of a cytoskeletal
filament as a function of time. Imagine a situation in which we have a closed
box in which a single cytoskeletal filament has been nucleated (using a nu-
cleating factor, for example) and which is bathed in a reservoir of monomers,
with the initial number of monomers being given by Ntot. Our goal is to com-
pute L(t), where L is the length of the filament as a function of time. The
rate at which monomers attach is konnfree, where nfree is the number of free
monomers and the rate at which monomers detach from the tip of the grow-
ing filament is koff . Write a dynamical growth equation for the dynamics of
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identify the variables
of interest

1 enumerate the ways 
those variables increase or
decrease and define rates

2 write down an equation describing
change over each time step Δt 

3 integrate to get an
equation m(t)
describing time –
evolution
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RATE EQUATION PROTOCOL
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Figure 1: The rate equation protocol. To write dynamical equations for the
time evolution of quantities of biological interest, there is a progression of
steps.

L(t) and find the solution. What is the steady-state length of the filament?
Make a plot of the length as a function of time - you can attempt to figure out
reasonable choices of the parameters by looking at book.bionumbers.org or
by looking at PBoC, but give an explanation of your choices. Also, compare
and contrast the analysis here with that done in class for the constitutive
promoter.

3. Fluorescence Recovery After Photobleaching and Diffusion.

In class I introduced the experimental method known as FRAP (Fluo-
rescence Recovery After Photobleaching). This technique is founded upon
an annoying feature of fluorescent molecules, namely, that if you shine light
on them for too long they stop giving off light. As often happens, people
figured out how to turn this annoyance into something useful. In particular,
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FRAP is often used to learn about the way that different parts of cells are
in diffusive contact.

In this problem, I want you to carry out a full derivation of the concentra-
tion as a function of position and time after photobleaching a cell of radius
25 microns with a “hole” of radius 2 microns. Think of the cell as having
a thickness of 1 micron. (Looking at the treatment of the one-dimensional
version of this problem in chap. 13 of PBoC will be helpful. Also, this part
of the problem is effectively problem 13.4 of PBoC2.) For simplicity, ignore
the presence of a nucleus, think of the cell as a perfect circle and imagine the
photobleached region as a circle at the center of the circular cell.

(a) Consider an initial concentration c0 of the fluorescent molecule of
interest which is uniformly distributed throughout the cell. How many
molecules of the fluorescent molecule are there - write an equation that gives
this number?

(b) Before doing any calculations, explain what the final concentration
c∞ will be after infinite time, when the system has returned to equilibrium.
You may assume that once a molecule has been photobleached it is effectively
dead and can be forgotten.

(c) Your goal now is to compute the recovery curve. What this means is
that you need to work out how many fluorescent molecules are in the pho-
tobleached region as a function of time. Make graphs for the case where the
photobleached region is centered about the origin. Make sure when you make
your plots you use reasonable values for the diffusion constant - justify your
choice.

(d) One of the uses of the FRAP technique is to determine the diffusion
constant of various molecules within the cytoplasm of cells. Discuss how that
might work on the basis of the derivation you have given here.

To do this problem you will need the table of zeros of the first derivative
of J0(x) given in the file attached to the homework. Make sure you explain
exactly what you are doing and what your results mean. Also, I want you
to plot the results for the recovery curve for different number of terms kept
in the Bessel series. Use just enough terms in the Bessel series such that
your answer has 5% accuracy in the region of interest, namely, the FRAPed
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region, and tell us how many terms you used.

Here is some stuff that will come in handy when thinking about this
problem. To obtain the solution, exploit the method of separation of variables
which posits a solution of the form c(r, t) = ρ(r)T (t). The equation for ρ can
be beaten into the form

d2ρ

dz2
+

1

z

dρ

dz
+ ρ = 0, (6)

where z is an effective variable that arises in the separation of variables
process. The only solution to this equation that does not diverge for z → 0
is the zero order Bessel function J0(z). Next, the boundary conditions at the
edge of the cell will lead to a condition of the form

J ′0(kR) = 0. (7)

Interestingly, the roots of J ′0 are just the roots of J1 because of the identity
J ′0(z) = −J1. The full solution you are looking for will emerge as (make sure
you demonstrate this clearly and convincingly)

c(r, t) = a0 +
∞∑
i=1

aie
−Dk2i tJ0(Kir). (8)

We can determine the coefficients ai using the initial condition c(r, 0). An-
other identity that will prove useful when doing the calculation of the coef-
ficients is:

∫
zJ0(z) dz = zJ1(z).
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