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Abstract

Tree cover is a fundamental structural characteristic and driver of ecosystem processes in terrestrial ecosystems, and trees
are a major global carbon (C) sink. Fire and herbivores have been hypothesized to play dominant roles in regulating trees in
African savannas, but the evidence for this is conflicting. Moving up a trophic scale, the factors that regulate fire occurrence
and herbivores, such as disease and predation, are poorly understood for any given ecosystem. We used a Bayesian state-
space model to show that the wildebeest population irruption that followed disease (rinderpest) eradication in the
Serengeti ecosystem of East Africa led to a widespread reduction in the extent of fire and an ongoing recovery of the tree
population. This supports the hypothesis that disease has played a key role in the regulation of this ecosystem. We then link
our state-space model with theoretical and empirical results quantifying the effects of grazing and fire on soil carbon to
predict that this cascade may have led to important shifts in the size of pools of C stored in soil and biomass. Our results
suggest that the dynamics of herbivores and fire are tightly coupled at landscape scales, that fire exerts clear top-down
effects on tree density, and that disease outbreaks in dominant herbivores can lead to complex trophic cascades in savanna
ecosystems. We propose that the long-term status of the Serengeti and other intensely grazed savannas as sources or sinks
for C may be fundamentally linked to the control of disease outbreaks and poaching.
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Introduction

In addition to being a prominent structural feature of savanna and

forest ecosystems, tree cover has far-reaching consequences for

ecosystem function [1,2]. Trees are a key component of stored

carbon (C), and thus important in the potential for ecosystems to act as

carbon dioxide (CO2) sinks in the effort to curb global warming.

Despite this, understanding the factors that influence tree cover,

herbaceous production, and soil organic matter in savannas and other

nonforest biomes remains a vexing and challenging problem in

ecology [3,4]. It has been hypothesized that top-down limitation by

fire and herbivores plays a dominant role in regulating tree cover

within bounds determined by rainfall [5]. Although rainfall does

indeed appear to impose an upper limit on tree cover in savanna

ecosystems [5–7], evidence to support the role of fire and herbivores as

factors driving tree cover below this maximum is conflicting [4–6,8].

There has accordingly long been disagreement among ecologists

about the relative importance of climate, fire, and herbivores

(especially elephants) as determinants of tree-to-grass ratios and tree

cover in African savannas [3,9,10]. Studies at the next trophic level do

little to clarify the situation as the factors that regulate herbivores (such

as disease and predation) and fire occurrence are poorly understood

for any given ecosystem.

We drew on a 44-y time series (1960–2003) to identify the direct

and indirect links among disease, herbivores, fire, rainfall, and

changes in tree density (which we use here as a measure of tree

cover) in the 25,000 km2 Serengeti-Mara ecosystem of East Africa

(Figure 1). Elephants (the dominant browsers), fire, and wildebeest

(the dominant grazers) have all been proposed as important drivers

contributing to changes in tree cover [11–14]. It has been

suggested that rinderpest eradication set in motion a far-reaching

and ongoing regulatory trophic cascade throughout the ecosystem,

with the resulting irruption of wildebeest leading to a reduction of

grass biomass and fire frequency, and an increase in tree cover

[15–17]. Here we use a rigorous statistical approach to examine

the evidence for this cascade, as well as competing explanations for

historic patterns of fire prevalence and fluctuations in tree density.

We further examine how changes at various nodes in this cascade

(herbivores, fire, and trees) may have shifted the carbon (C)

balance of the Serengeti ecosystem over the past half-century.

We compared ten competing models for the determinants of fire

and tree density change in this ecosystem (Table 1). These models

jointly investigated the effects of grazer abundance and rainfall on

fire, and the influence of fire, elephants, grazers, rainfall, and

atmospheric CO2 concentration on per capita changes in tree

density inferred from photopanoramas.
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Results

The model with the strongest support, based on the deviance

information criterion (DIC) (Table 1), identified wildebeest

(Figure 2A, presumably via their grazing impact on grass biomass)

and intra-annual variation in rainfall (the ratio of wet:dry rainfall)

as the best predictors of fire occurrence (defined as the proportion

of the ecosystem that burns per year). The differences in model

DIC values (Table 1) suggested that wildebeest grazing is a better

predictor of fire than is intra-annual rainfall variation, but both of

these variables contributed to the observed global patterns of fire

occurrence in the Serengeti (Figure 2C) as inferred from the

credible intervals of their coefficients (b1 and b2, respectively;

Equation 4 and Table 2). The inclusion of mean annual rainfall

did not improve model fit (Table 1).

The results also suggested that that fire alone—and not

elephants (Figure 2B), mean annual rainfall, or atmospheric

CO2—has been the primary driver of observed changes in tree

density (Figure 2A–2E). Per capita tree density changes were

negative from 1960 until the mid 1970s, becoming positive

thereafter (decelerating after 1990); our model closely tracked

these trends (Fig. 2D, 2E, and 2G). Furthermore, about a third of

the variance in tree density change that was unexplained by the

best-fitting model could be explained by variation in density

(Figure 2H): photopanorama sequences with low initial tree

density had faster per capita growth than expected, suggesting that

density dependence (which we could not model explicitly, as we

only had data on relative density changes within photopanorama

sites) has also played an important role in regulating tree

dynamics.

The DIC results were clear in teasing apart the drivers of fire

occurrence over time, but less clear in terms of inferring the factors

regulating tree density. On the one hand, model 3 performed

better than (or as well as) more complex models, but on the other,

models 2 (fire effects only) and 7 (elephant effects only) had similar

DIC values (Table 1). The role of fire was supported, however, by

an examination of coefficient credible intervals. The fire coefficient

(c1) differed from zero both when it appeared alone or with

elephants as a covariate (Table 1; values for model 3 given in

Table 2), but the credible intervals for the elephant, mean annual

rainfall, and atmospheric CO2 coefficients included zero in all

models. To further test the explanatory power of fire versus other

factors in driving tree density changes, we ran model 3 again, but

fitted only to tree data for the period 1981–2003 (see Methods),

and then validated by comparing its predictions with the reserved

1960–1980 data. We also ran two competing single-factor models

(elephants and mean annual rainfall) with the same dataset. In all

cases we included wildebeest and intra-annual rainfall variation as

explanatory variables for fire. The fire model performed equally

well with the reduced and full datasets (Figure 3), closely tracking

the trajectory of the original model and predicting the decline in

tree density that occurred in the 1960s and 70s (Figure 3). The

other two models, however, while fitting the 1981–2003 data quite

well, performed poorly for the validation period (Figure 3).

We extended our analysis to include the role that the

eradication of rinderpest (a Morbillivirus closely related to measles

and distemper [16]) played in causing a shift from top-down

disease control to bottom-up resource limitation in wildebeest. The

prevalence of rinderpest, which causes high levels of mortality in

wildebeest calves, declined rapidly following vaccination of the

cattle that were a reservoir for the pathogen (Figure 4A) [16].

Eradication of the pathogen permitted the wildebeest population

to erupt, ultimately driving the trophic cascade (driven by grazing-

mediated fire suppression) that resulted in a marked increase in

tree density.

The rinderpest-triggered trophic cascade may have had far-

reaching functional consequences for the role of savanna

ecosystems as carbon (C) sources or sinks. The soil C (SOC) and

plant biomass C pools contain most of the C in terrestrial

ecosystems, and a decline in the size of these pools would make the

ecosystem a net source of C. Grazing intensity (GI) and fire have

been shown theoretically [18] and empirically (unpublished data)

[19] to enhance and reduce the size of the soil organic matter pool

in the Serengeti, respectively. We redefined tree density in units of

C per km22, and used functions relating fire and GI to changes in

SOC to simulate changes in the size of these two C pools with a

modified version of our best-fit Bayesian state-space model (BSS)

model (model 3). The model predicted changes in ecosystem-level

C stocks in the Serengeti between 1960 and 2003 based on annual

estimates of GI, fire extent, and changes in tree density over this

period (Figure 5).

Discussion

Our results suggest that long time series, examined over

appropriate spatial scales, can identify strong signals in the

relationships among herbivores, fire, climate, and vegetation. Our

model explained about three-quarters of the variance in both fire

and per capita tree density change (Figure 2F–2H). This is

particularly striking in the case of fire, which depends not only on

fuel loads, but also on the occurrence of ignition events. Here we

show that grazer population size (and by implication grazer-

determined fuel loads) is a key determinant of fire frequency, a

finding documented in at least one other savanna system [20], and

thus grazer abundance is an important indirect driver of tree

population dynamics, supporting findings from previous modelling

and empirical studies [21–23]. Although much of the relationship

between wildebeest population size and fire extent is arguably

driven by the widespread changes that occurred up to 1975 in the

immediate aftermath of rinderpest eradication, to the best of our

knowledge no other plausible driver of fire extent has exhibited a

temporal pattern that might explain the historic decline in fire. For

example, marked increases in human population density around

Author Summary

Diseases are known to play important roles in regulating
and structuring populations, but the consequences of
disease outbreaks for entire communities and ecosystems
are not as well understood. The Serengeti wildebeest were
historically kept at low numbers by the rinderpest virus,
but underwent a population explosion (irruption) after
rinderpest was eradicated in the 1960s. We examined
nearly a half-century of data to test the hypothesis that
this irruption was responsible for a decline in the
frequency of fires in this ecosystem (through increased
grazing and a reduction in fuel loads), and that this in turn
increased the density of trees. We found strong evidence
for this indirect link between rinderpest and tree density,
and less support for the role of other factors such as
elephants and climate. We also investigated the conse-
quences of this chain of events for ecosystem carbon, and
suggest that the combined effects of increased grazing
intensity by wildebeest, reduced fire, and increasing tree
density may have shifted the Serengeti from being a net
source to a net sink for carbon. This would imply that
seemingly small ecological perturbations such as disease
outbreaks have the potential to profoundly affect ecosys-
tem function.

Trophic Cascades and Carbon Dynamics
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the Serengeti [24] and changes in park fire management policies

over the past few decades (both of which alter the frequency of

ignition events) [11] might have been expected to overwhelm the

effects of grazers in determining fire occurrence, but this was

clearly not the case. An important caveat to our model results is

the lack of direct data on grass biomass across the ecosystem. The

link between wildebeest population size and standing grass

biomass is implicit in our model, and would no doubt be

strengthened by the availability of time-series data for grass

biomass. Other studies, however, have shown both directly [25]

and indirectly (by estimating grass production and wildebeest

consumption [21]) that wildebeest can exert a very strong

regulatory effect on grass cover in the Serengeti at landscape

scales. This finding is consistent with the observation that at large

enough spatial scales, it is fuel loads rather than ignition events

that determine fire occurrence in savannas [26]. Our results also

support the hypothesis that savannas are primarily regulated by

fire (and not rainfall) above a mean annual rainfall threshold of

650–700 mm (most of the Serengeti woodlands fall above this

limit) [5,22]. Variation in rainfall failed to directly explain patterns

of tree density change, but it did play an indirect role by

modulating the fire regime [27].

Notably, our results suggest that although elephants are known

to exert important local effects on tree dynamics in Serengeti

woodlands [12,13,28], there is only weak support for the notion

that elephants have influenced ecosystem-wide temporal patterns

in tree density over the past half-century. Our model suggests that

fire, rather than elephants, has been the key driver of tree density

change in the Serengeti over the past half-century. A separate

simulation model, drawing on different sources of data, predicted

that both fire and elephants (at their present-day population size,

which is relatively high by historical standards) can determine tree

cover in the Serengeti, with fire being of greater importance [21].

There are, however, additional factors that must be considered in

evaluating the overall importance of elephants for tree density.

First, the elephant population of the Serengeti has historically been

kept low by poaching. It is rapidly expanding at present, and in the

future elephants could potentially exert large-scale impacts on

Figure 1. Map of Serengeti National Park with tree density sampling sites. Shown are locations of photopanorama sites and sampling sites
for the 1999 tree density data (only those in savanna sites are shown) [40]. The map also illustrates the main savanna and grassland habitat types. It
appears to show fewer than 51 photopanorama sites because several of these were taken close together but with different cardinal orientations.
doi:10.1371/journal.pbio.1000210.g001

Trophic Cascades and Carbon Dynamics
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vegetation. Second, elephants are patchily distributed in Serengeti

[21,29], and global assessments as summarized in our model do

not capture spatial heterogeneity in their effects (the same

observation applies to fire), or localized interactions with fire

and other factors [30,31]. An important future challenge will be to

reconstruct and explain spatial patterns of tree cover change in this

system. Third, elephants may have impacts on tree cover in

savannas that are not reflected by changes in tree density. This is

because they often feed on medium to large trees [12], and their

impact can reduce canopy cover (thus having an impact on

vegetation structure) while maintaining density (or even potentially

increasing it, as a single large tree is replaced by several smaller

recruits).

Our results are consistent with the rinderpest trophic cascade

hypothesis [15,16], which proposes a linear chain of causality of

remarkable simplicity operating in the Serengeti, one that zigzags

vertically across three ‘‘trophic’’ levels: decreased pathogenRin-

creased specialist consumer (wildebeest)Rdecreased producer

(grass)Rdecreased generalist ‘‘consumer’’ (fire)Rincreased pro-

ducer (trees), mediating the relative dominance of two functional

producer groups, trees and grasses (Figure 4B). On the face of it,

that a pathogen could regulate such a fundamentally important

aspect of ecosystem structure as woody cover (through its effects on

an herbivore that does not even consume trees) might seem

improbable, but there is growing evidence of trophic cascades via

subtle links in other ecosystems [32,33], and, more broadly,

increasing recognition of the role of pathogens in regulating plant

communities [34]. We propose that the dominant factors

controlling tree density in the Serengeti are top down, and that

episodic top-down regulation of the herbivores by infectious

disease has historically played an important role in restructuring

this and (potentially) other ecosystems. In essence, the period of

rinderpest enzoosis that prevailed throughout the first half of the

20th century in the Serengeti matches the scenario of the HSS

(Hairston, Smith, and Slobodkin) ‘‘Green World’’ model [35], but

with a pathogen playing the role of predator and fire dynamics

modulated by herbivory constituting a critical piece of the puzzle

[16]. Although the scheme we propose in Figure 4B simplifies the

range of possible interactions and feedbacks that could occur in an

ecosystem as complex as the Serengeti (e.g., food availability as

mediated by rainfall could affect the susceptibility of herbivores to

disease), it captures what we believe to be some of the salient

features of the system.

Our simulations of C stocks suggest that the changes in

wildebeest population density, fire prevalence, and tree density

that have occurred over the past half-century may have had

important effects on the C stocks in woody biomass (Figure 5A).

Furthermore, new field studies show that current densities of

wildebeest and resident grazers stimulate storage of soil C

(unpublished data). Thus, our analysis allows us to estimate C

loss and accumulation in the Serengeti ecosystem as a function of

its trophic organization. A caveat to our estimates of tree biomass

C is that, lacking data on changes in the size class distribution of

tree over time, we must assume for simplicity that C stocks are

directly proportional to density. This assumption might hold true

when the size distribution is stable over time, but when changes in

density are asymmetric across size classes (e.g., fire tends to remove

small trees, elephants large ones), this assumption is violated.

Better estimates of historic changes in tree C stocks will require

data on tree size distribution changes over time, which are not yet

available. Nevertheless, given our data, our best estimate is that

Serengeti trees and soils constitute a net C sink, removing on the

order of 40–70 Mg C km22 y21 from the atmosphere (Figure 5B).

Across 25,000 km2 of mostly protected woodland habitat across

the entire ecosystem, this is equivalent to 106 Mg C y21. In

contrast, our model suggests that in the past, when rinderpest was

endemic and grazer densities were low, the Serengeti was a net C

source. Rinderpest eradication may thus have had ecological

consequences in the Serengeti that extend beyond the impact on

habitat and landscape structure in this system. Furthermore, any

future epizootic (or any population crash from whatever cause,

including disease, hunting, or drought) may rapidly reverse the

changes that have occurred over the past few decades and would

release the C from its present stored form back into the

atmosphere.

A fundamental insight that emerges from the Serengeti

longitudinal dataset is the value of the occurrence of external

perturbations as proxies for manipulative experiments. The

emergence and subsequent eradication of rinderpest resulted in

multivariate transient dynamics, the pattern of which provides

valuable information about the causal links that drive the system.

At large spatial scales, manipulative experiments are infeasible,

and deriving insights from natural experiments is an essential

alternative for understanding the dynamics of complex systems at

the landscape scale, which is a necessary step towards devising

scientifically informed conservation policy in protected areas.

Our results also show that wildlife conservation (via control of

illegal hunting and exotic diseases) has an evident potential to

make the Serengeti a substantial C sink in both wood and soils.

This status could possibly allow the Serengeti to draw revenue for

its management; the annual amount of C removed from the

atmosphere by the system operates as a sink that could offset seats

taken by tourists on flights from Europe and the rest of the world

to East Africa or be marketed as CO2 offsets on carbon markets.

This suggests a novel approach to maintaining the conservation

status of this region by coupling park revenues to the economics of

C offsets. Furthermore, even though the current status of the

Serengeti as a C sink is unlikely to hold indefinitely (the system will

eventually saturate and become C-neutral), incentives are required

that minimize the risk of the system becoming a net source of C

should further disease outbreaks occur. The key point here is that

the Serengeti may only work as an efficient C sink in the short

Table 1. Candidate models of fire and per capita tree density
change in the Serengeti.

Modela Variables Affecting: p
D

b DICc

Fire Trees

1 Rw:d F 50.9 362.6

2 W F 49.3 355.7

3 W, Rw:d F 49.3 349.9

4 W E, F 52.6 359.0

5 W E, F, Rann 52.6 358.2

6 W E, F, W 51.7 357.8

7 W E 51.9 358.0

8 W, Rw:d E, F 51.3 351.7

9 W, Rw:d, Rann E, F 52.0 352.7

10 W, Rw:d F, CO2 51.7 351.1

aThe models are defined by the variables that drive fire (F ) and tree (T )
dynamics: elephants (E ), wildebeest (W ), annual rainfall (Rann), wet:dry season
rainfall (Rw:d), and atmospheric CO2 concentration (CO2).

bEffective number of parameters.
cDIC; the best-fitting overall model (lowest DIC) is shown in bold.
doi:10.1371/journal.pbio.1000210.t001
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term if it is grazed by over one million wildebeest (Figure 5C).

Their abundance is intimately dependent upon the control of

infectious diseases and game-meat poachers [36], as well as the

continued viability of the migration, which is increasingly

disrupted by land-use changes along the northern and western

boundaries of the park [37]. The management of top-down

trophic cascades can thus have important implications for how

local ecological dynamics impact global-scale processes.

Figure 2. Fits to the data for the best model. (A) wildebeest, (B) elephants, and (C) proportion of Serengeti National Park burned. Each subfigure
illustrates observations (filled circle), posterior means of estimated true values (solid line), and 95% credible intervals for the posterior distributions
(dashed lines); standard errors for the observed values are shown for the wildebeest data. (D) Annualized rates of per capita tree density change (r),
centred on the midpoints of each time span (e.g., a value of r based on photos taken in 1980 and 1990 is centred on 1985). Correlations among points
(corresponding to photo sites) are not shown for legibility, except for two sites: (blue and red solid lines, data; dashed lines, model fit). (E) Model fit for
rate of per capita tree density change (mean and 95% credible intervals) plotted jointly over time with observed values of r (the values are means for
the midpoint values in [D]). Predicted versus observed values of (F) fire (proportion of area burned) and (G) rates of per capita tree density change,
and (H) model residuals from (G) versus the logarithm of initial tree density corresponding to the start of each photo sequence.
doi:10.1371/journal.pbio.1000210.g002

Trophic Cascades and Carbon Dynamics

PLoS Biology | www.plosbiology.org 5 September 2009 | Volume 7 | Issue 9 | e1000210



Materials and Methods

Study System and Data Sources
Serengeti National Park and the broader Serengeti-Mara

ecosystem (Serengeti hereafter) have been described in detail

elsewhere [11,25,38]. The ecosystem comprises an area of

,25,000 km2 in Tanzania and Kenya in East Africa, and is

characterized by a marked southeast to northwest rainfall gradient,

as well as a roughly parallel gradient of increasing soil depth, sand

to clay ratio, and declining fertility. It can be divided into areas of

pure grassland in the southeastern plains and woodland in the rest

of the ecosystem. The grasslands are the product of edaphic

constraints [39], and the woodlands vary spatially and temporally

in terms of tree cover [28,40]. Wildebeest (Connochaetes taurinus) and

elephants (Loxodonta africana) are dominant grazers and browsers,

respectively, and can be regarded as keystone species in their

respective feeding guilds, although giraffe (Giraffa camelopardalis)

also have locally significant effects on trees [12].

We obtained wildebeest and elephant population estimates from

census data [41,42] for the entire Serengeti ecosystem, and

calculated the proportion of area burned in any given year from

published [28,43] fire maps and our own database. We estimated

mean per capita annual changes in tree density from sequential

photopanoramas collected by A.R.E.S. at 51 sites in the Serengeti

woodlands [11,44] between 1960–2003 (Figure 1). The sites were

chosen in northern and central Serengeti to match photopanor-

amas that had been established at earlier dates (pre-1960) and/or

to achieve a good representation of road-accessible areas of the

park. The time gaps between successive photopanoramas varied

from site to site, and ranged between 2 and 31 y, resulting in

sequences of between two and six photos per site (Dataset S1). To

calculate observed annualized per capita changes in tree density

(r0
i,j ) across sites (i) and time periods (j), we used the following

equation:

r0
i,j~

log(Ni,jz1){log(Ni,j)

yjz1{yj

ð1Þ

Table 2. Estimated values for Bayesian state-space model
parameters.

Parameter Mean SD 2.5%a Median 97.5%a

E0 1,029 139 769 1,040 1,242

W0 236 22 203 232 286

T0 601 212 233 594 970

a 3.56 1.08 1.83 3.46 6.03

a 9.24 1.26 8.05 9.13 10.82

b0 0.07 0.64 21.12 0.04 1.33

b1 20.0019 0.0005 20.0028 20.0019 20.0010

b2 0.22 0.09 0.04 0.22 0.39

c0 0.19 0.07 0.06 0.19 0.35

c1 0.46 0.19 0.11 0.45 0.88

h 909 528 77 861 2,142

rE 0.071 0.040 0.013 0.065 0.170

rW 0.194 0.033 0.127 0.194 0.259

n2
site

0.037 0.010 0.019 0.037 0.057

n2
E

0.158 0.097 0.028 0.141 0.376

s2
E

0.246 0.078 0.106 0.245 0.403

n2
R

0.074 0.006 0.063 0.074 0.087

s2
T

0.103 0.042 0.044 0.095 0.208

n
{2

W
0.091 0.012 0.070 0.091 0.114

s2
W

0.054 0.022 0.022 0.050 0.108

a95% credible intervals.
SD, standard deviation.
doi:10.1371/journal.pbio.1000210.t002

Figure 3. Validation of the role of fire with a restricted dataset. Models that incorporated only the effects of fire, elephants, or rainfall on per
capita tree density change were fitted to photopanorama data from the post-1980 period only (1980–2003 data were used for model fitting). The
figure shows how well alternative tree dynamics models fit the pre-1980 photopanorama data (the validation period). The original best-fit model
(model 3, fitted to the entire dataset) is also plotted for reference. Each data point represents a mean across multiple sites for a particular time period
(a midpoint, see Figure 1E).
doi:10.1371/journal.pbio.1000210.g003

Trophic Cascades and Carbon Dynamics
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where Ni,j and Ni,j+1 are the numbers of trees counted within a

fixed frame (reproducible across time periods) inserted in photos j

and j+1, respectively, and yj+12yj is the time elapsed between

photos. Note that N are counts, but because trees were counted

within fixed areas, we could treat r as a density change. It is a

relative and not absolute density change because we could not

measure the absolute areas covered by the frames. We used

monthly rain gauge data to generate rainfall surfaces with inverse

distance weighting, and estimated mean ecosystem-wide annual

rainfall (Rann, in mm), dry-season (June–October) rainfall (Rdry, in

mm), and the ratio of wet (November–May) to dry season rainfall

(Rw:d) for the period 1960–2003. We used a poaching index (P,

dimensionless) reconstructed from carcass data in the Serengeti

[36] to model elephant population dynamics. We set P to 0 starting

in 1990 on the basis of reports of negligible elephant poaching in

the park following the ivory ban instituted in 1989. To incorporate

the effects of atmospheric CO2 on tree population growth, we used

published values of CO2 (C, in ppm) from the Mauna Loa long-

term dataset in Hawaii [45]. We reconstructed the history

of rinderpest seroprevalence in the Serengeti for the periods

1958–1963 and 1982–1989 from the literature [46–48]. Raw data

values for the model covariates used in the analysis are given below

as text files for R and WinBUGS input.

State-Space Model
A technique that is increasingly gaining currency in ecological

studies for the analysis of time series data with nonlinear dynamics,

process and observation error, missing data, and latent variables is

the BSS model using Gibbs sampling [49–52]. Given that our data

analysis confronted all of these challenges, we adopted this

approach to make inferences about the factors driving fire and tree

population dynamics in the Serengeti. This framework allowed us

to jointly model the population dynamics of the herbivores, which

we treated as covariates, and fire and tree population dynamics.

Some of the environmental covariates available for the Serengeti,

such as annual rainfall, have been monitored continuously over

the period of analysis, but herbivores have been censused unevenly

over time; and for both elephants and wildebeest, the proportion

of missing data exceeds 50%. To impute values for these missing

data (with appropriate error estimates), we required nonlinear

population dynamics models incorporating both process error

(accounting for demographic and environmental uncertainty) and

observation error [50].

There were four dynamic variables that needed to be modeled:

the total numbers of wildebeest (W) and elephants (E), fire (F),

expressed as the proportion of the ecosystem that burns year21,

and tree density ha21 (T). The BSS model allowed us to model

probability distributions for the true values of these variables, both

for years with and without missing data, by specifying probability

models for each variable in year t conditional on: (i) its value in

year t21; (ii) the values of other variables hypothesized to affect it;

and (iii) the observations [50]. We treated W and E as modeled

covariates and F and T as dependent variables. We modeled W

and E by drawing on past work supporting key effects of dry-

season rainfall on wildebeest carrying capacity [53], and of

poaching [29] on elephant dynamics [54].

A BSS model generally comprises three components: a process

equation describing the dynamics of the variable of interest (e.g.,

the true size of an animal population over time), an observation

equation linking the process equation to the data, and prior

distributions for the unknown parameters [50]. In this case, we

have a multivariate time series of linked variables, so we have

multiple process and observation equations [49]:

Process equations. Our model tracked the population

dynamics of wildebeest, elephants, and trees, and the occurrence

of fire. These variables can influence each others’ dynamics

(e.g., fire and elephants can affect trees), but each can also be

influenced by a number of independent variables, which in our

model included the various rainfall variables (Rann, Rdry, and Rw:d),

human hunting pressure (P), and atmospheric CO2 (C). We

constructed our model on a foundation of extensive past research

on the wildebeest of the Serengeti, which has shown that their

population dynamics over the past half-century can be largely

explained by release from rinderpest, followed by food limitation

(grass production determined by dry season rainfall) rather than

by predation or hunting, which have had a marginal effect

[41,53,54,55]. Rather than draw inferences on the regulation

of herbivore populations, we are interested in reconstructing

the trajectories (with error estimates) of these populations since

1960.

We used the logistic growth model for the deterministic portion

of the wildebeest process equation:

Figure 4. Rinderpest-mediated regulation of ecosystem dynamics. (A) Serengeti wildebeest population (filled circle) and rinderpest
seroprevalence reported for the periods 1958–1963. (B) Inferred causal relationships driving tree population dynamics in the Serengeti. The dominant
effects are shown with thick arrows. Highlighted in red is a four-step pathway of causality linking rinderpest with tree population dynamics. The grass
compartment, as an unobserved variable, is shown in dotted outline.
doi:10.1371/journal.pbio.1000210.g004
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Wt~W T
t{1zrwW T

t{1 1{
W T

t{1

aRdry,t{1

� �
ð2Þ

Here, Wt and W T
t are the deterministic and true wildebeest

population sizes at time t, respectively, and aRdry,t determines the

carrying capacity of the system. We note that other models are

possible, but Equation 2 (Figure 2A) fits the census data

exceedingly well.

The Serengeti elephant population followed a pattern of

rapid growth in the 1950s and 1960s, a decline due to poaching

in the 1970s and 1980s, and subsequent recovery following the

ivory ban in 1989. Elephant populations at other sites in Africa

have exhibited consistently high population growth rates at

population densities over an order of magnitude higher than

those encountered in the Serengeti [56], so we assumed no

density dependence. We used a simple model of exponential

growth (adequate for the time period involved) coupled with a

hunting term for the deterministic portion of the elephant

equation:

Et~ET
t{1zrEET

t{1{hPt{1 ð3Þ

where Et and ET
t are the deterministic and true elephant

population sizes at time t, respectively, h is a harvest parameter,

and P is poaching intensity.

We use alternative forms of the following equation (depending

on our candidate model) to model the proportion of the park that

burns each year:

logit(Ft)~b0{b1W T
t zb2Rw:d,tzb3Rann,t ð4Þ

Here, the logit link function keeps Ft within the bounds 0 (no fire)

and 1 (complete burn). The term for W T
t in Equation 4 assumes

that wildebeest consumption affects the amount of grass biomass

available for burning, and the term for Rw:d, on the basis of the

premise that abundant wet season rain results in elevated fuel loads

that are then more likely to burn under dry conditions in the dry

season, follows from a hypothesized relationship between seasonal

differences in rainfall distribution and fire [27,57]. We also tested

the effect of Rann,t on fire, given that total grass production is

primarily a function of annual rainfall [25,58].

To model changes in tree density, we again use alternative

formulations, with the ‘‘full’’ model being of the form:

Tt~TT
t{1z c0{c1Ft{1{c2ET

t{1zc3Rann,t{1{c4W T
t{1zc5Ct{1

� �
TT

t{1 ð5Þ

where Tt and TT
t are the deterministic and true tree densities at

time t, respectively. In each of the candidate models, one or more

terms were dropped from Equations 4 and/or 5. The term

containing W T
t{1 tested for a direct effect (in addition to the fire-

mediated indirect effect) of wildebeest on tree dynamics, e.g.,

through trampling, consumption of seedlings, and damage

through horning [14,59], and Rann tested for the effect of wet

years on recruitment pulses [60]. The variable C was included

because CO2 concentration has increased significantly over the

period of study [45], and it could contribute to CO2 fertilization

and enhanced tree growth [4].

In Equations 2–5, the b’s, c’s, a, rW, rE, and h are parameters to

be estimated, together with W0, E0, and T0, the initial wildebeest

and elephant population sizes and initial tree density, respectively.

These equations represent a deterministic process. To introduce

process error in the wildebeest, elephant, and tree population

Figure 5. Shifts in ecosystem C balance. (A) Tree C was modelled
with a point estimate of tree biomass C from 1999 [40]. Shown are the
posterior mean (solid line) and 95% credible intervals (dashed lines). (B)
Simulated changes (as 5-y moving averages) in ecosystem C stocks
(total, tree C, and SOC changes driven by fire and grazing to 40 cm
depth) and annualized decadal net changes in total ecosystem C
balance (means695% confidence intervals) between 1960–2003; the
temporary shift from net sink to source predicted by our simulation in
2000 was driven by drought and resulting overgrazing. (C) Inferred
causal pathways linking disease with changes in ecosystem C stocks as
a result of a trophic cascade (solid line, direct effects; dashed line,
indirect effects).
doi:10.1371/journal.pbio.1000210.g005
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dynamics equations, we assumed lognormal errors (because of the

geometric nature of population growth in Equations 2, 3, and 5) to

derive the ‘‘true’’ population sizes at time t:

W T
t * lognormal( log (Wt),s

2
W ) ð6aÞ

ET
t * lognormal( log (Et),s

2
E) ð6bÞ

TT
t * lognormal( log (Tt),s

2
T ) ð6cÞ

In time-series population data, ignoring process error can result in

biases in parameter estimation because errors propagate through

time [50]. We assume that population growth is a Markov process

where the state of the population is conditionally dependent on its

state in the preceding time period. Although process error is also

bound to occur in the fire equation (fire occurrence is a stochastic

process), ignoring process error poses less of a problem because we

reasonably assume that Ft is independent of its value at t21.

Observation equations. The parameters and process

equations represent the unobserved portion of the model. Their

values can be inferred by linking them to the data [50]. We

assumed lognormal errors for the distributions of W, E, and T

[49,50]:

W 0
t * lognormal( log (W T

t ),n2
W ) ð7aÞ

E0
t * lognormal( log (ET

t ), n2
E ) ð7bÞ

T0
t * lognormal( log (TT

t ), n2
T ) ð7cÞ

where W 0
t and E0

t T0
t are wildebeest and elephant population

estimates from census data and T0
t are observed tree densities. In

addition to the population estimates, we have error estimates n2
est, t

for the size of the wildebeest population for most census periods

(Table 2). These can be used to inform the estimate of the true

observation error for the size of the wildebeest population n2
W .

Clark and Bjornstad [50] used such estimates to generate priors for

the size of the observation error for each period. We treated them

as data, assuming that they represent alternative realizations from

a single distribution of observation error with mean n2
W . Given

that variances are necessarily positive, we assumed an inverse

gamma distribution for the estimated variances of the wildebeest

census estimates:

n2
est,t*IG 1,n2

W

� �
ð8Þ

The parameterization of the inverse gamma distribution in

Equation 8 assumes a variance equal to the square of the mean

[50].

Since our tree data consisted almost exclusively of per capita

density changes, and not actual densities, we lacked data for T0
t .

To provide an empirical reference point for tree density, we used

data from a 1999 survey conducted across 113 plots in the

woodland portion of the Serengeti [40]. This gave us a mean value

of T0~1,260 tree ha21 in 1999. We used the standard error of

tree density across these plots as a fixed value for n2
T .

We used a beta distribution to model error in the observation

equation for fire because this variable (a proportion) is constrained

to range between 0 and 1:

F0
t *beta(a,b) ð9Þ

We reparameterized Equation 9 in terms of the mean of the

distribution (Ft) as:

F0
t *beta a,a

1{Ft

Ft

� �
ð10Þ

leaving only parameter a to be estimated.

To model observation error in per capita tree density change,

TT was sampled by the model at the intervals j given by the

photopanorama data (Equation 1) to estimate true values of rT
i,j :

rT
i,j~

log TT
yi,jz1

� �
{ log TT

yi,j

� �
yi,jz1{yi,j

ð11Þ

These were then compared with the observed values (see Protocol

S1):

rO
i,j*normal mizrT

i,j ,n
2
r

� �
ð12Þ

where mi is a random effect that accounts for correlations among

tree changes within site i (for example due to differences in fertility

or topography among sites). We modeled mi as follows:

mi *normal 0,n2
site

� �
ð13Þ

The highly spatially clustered nature of the photopanorama

dataset suggested that a random effect might be required to

account for correlations among sites that are close together. To

allow for this, we tested a model with a random effect for a ‘‘region

effect’’ in r (north versus central Serengeti, Figure 1). The model

was unable to converge on a solution for this coefficient (an

identifiability issue [61]), suggesting either that the regional effect

was negligible or that the dataset was too small to allow for an

analysis of spatial effects. In our final analysis, we ignored such

spatial correlations.

Priors. We used uninformative priors in all cases (see

WinBUGS code below). We used uniform priors constrained by

reasonable bounds (e.g., our initial population priors bracketed

recent, pre-1960 census estimates) for the elephant and wildebeest

population model parameters (a, rW, rE, h, W0, and E0) and for T0,

Gaussian priors (with mean 0 and variance 106) for the b’s and c’s

in the fire and tree equations (Equations 3 and 4), and inverse

gamma distributions (with shape and scale = 1023) for the

variances of the process (s2
W , s2

E , and s2
T ) and observation (n2

W ,

n2
E , n2

r , and n2
site) errors, and for parameter a of the beta

distribution.

Candidate Models and Implementation
Our immediate objective was to find W T

t , ET
t , Ft, and rT

i,j (the

actual values of interest, which we can express as a vector X )

together with the model parameters and error estimates (which we

jointly refer to as the vector h) that produced the best fit to the data

W 0
t , E0

t , F0
t , r0

i,j (the vector of observations Y). The model

described in Equations 2–13 can be expressed in terms of the joint

likelihood of the variables and parameters for the period 1960–

Trophic Cascades and Carbon Dynamics
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2003, given the observations, or p(X,Y| h). The joint posterior

distribution is proportional to this likelihood times the priors, and

estimates of the X’s and h’s can be obtained by sampling from this

joint posterior [50], which is difficult or impossible to do

analytically. We used WinBUGS 1.4 [49,62], which uses Gibbs

sampling, a Markov Chain Monte Carlo (MCMC) technique [63],

to generate these estimates. We ran ten versions of the model

(Table 1), combining alternative forms of Equations 4 and 5,

allowing for two different drivers of fire (wildebeest and wet:dry

rainfall ratio) and five of per capita tree density change (fire,

elephants, rainfall, wildebeest impact not explained by effects on

fire, and atmospheric CO2). We did not assess the potential

contribution of human population increase on fire patterns for two

reasons: first, we lacked sufficient data on human population

change over the period in question; second, what we did have

suggested that fire declined as the human population increased,

making this explanation a poor a priori candidate for our fire

model. We compared the fits of alternative models with the DIC,

analogous to the AIC used in an information theoretic framework

[64,65]. Our alternative versions of Equations 4 and 5 allowed us

to simultaneously determine the relative importance of climate and

herbivory on fire occurrence, and of climate, herbivory, fire, and

atmospheric CO2 on tree population dynamics. The WinBUGS

code for the best model (model 3; see Table 1) is given in Protocol

S1. We ran each model for 106 iterations and discarded the first

half of these as ‘‘burn-in.’’ We used multiple initial values for each

parameter and checked for model convergence with the Gelman-

Rubin diagnostic [66]. We verified that our sampling interval did

not lead to autocorrelation between successive realizations of each

variable. We also examined the posterior distributions of all model

parameters and variables to ensure that that they were not unduly

constrained by the limits imposed by the priors (in the case of

uniform distributions) and that they were approximately normally

distributed.

Variance Explained and Effects of Density-Dependence
To put our results into perspective for readers unfamiliar with

Bayesian approaches, we plotted observed versus predicted (by the

state-space model) values for fire and tree cover change and

calculated adjusted-R2 values as approximate indicators of the

amount of variance explained by the best model (Figures 1F and

1G). We took as our predicted values the mean of the posterior

distribution for each response variable. Although the Bayesian

approach generates distributions rather than point estimates, we

treated these means as our best estimates of model predictions. We

noted a number of outliers in the plot of observed versus predicted

values of ri,j (Figure 1G), even after accounting for site differences

in tree population change. We hypothesized that these particularly

high observed values of annualized relative growth might be

associated with the initial tree densities in these sites, so we plotted

the model residuals (robs2rpred) against the logarithm of N1, the

tree count at the beginning of each paired photo sequence.

Although we found that initial tree abundance explained almost an

additional fifth of the total variance in tree population growth

(Figure 1H), we could not parameterize the exact magnitude of

this effect because we were unable to standardize tree densities

across photos.

Estimation of Ecosystem C Flux
To estimate ecosystem-level C fluxes in the Serengeti as a result

of changes in wildebeest population size, fire, and tree density, we

simulated changes in the size of the two dominant ecosystem C

pools, tree C, and SOC. Our own analysis indicated large shifts in

tree density, and recent empirical and modeling studies support

the existence of dominant fire and grazing effects on SOC

(unpublished data) [18,19], so we focused our analysis on these

three effects. We explicitly simulated the dynamics of tree C to

calculate annual changes in biomass C, and estimated gains/losses

from the soil C pool caused by grazing and fire from equations

derived empirically (unpublished data) and through modeling of

soil nutrient dynamics [18], respectively. We did not explicitly

model the dynamics of the SOC compartment because the fluxes

we report are small in relation to the absolute size of the total soil

C pool, and we could significantly simplify our analysis by treating

SOC as a pool of constant size (to a first approximation) over the

relatively short time scale of the analysis.

We modified the best overall state-space model (model 3 in

Table 1 of the main text) by expressing tree density T in C units

(Mg C km22). We obtained a point estimate of tree C for 1999 (of

997 Mg C km22) in the woodland portion of the ecosystem by

combining our plot data [40] with allometric equations relating

stem and crown diameter with aboveground and belowground

biomass in Acacia tortilis [67], the most common tree species in the

ecosystem. We then converted biomass into tree C per km2 in the

survey plots across tree size classes. Fire effects vary widely across

tree size classes [12], and much of the woody biomass in large trees

does not burn and volatilize in the short term [68]. Because our

tree data does not discriminate among size classes, however, we

can not incorporate this size distribution effect and treat our

estimates of biomass C fluxes only as approximations. We used the

estimated 1999 value in combination with the model to estimate

woody biomass C for the entire period 1960–2003, the same way

we previously did with density.

To simulate the effect of grazing on the soil C pool, we used the

following empirically derived polynomial equation (unpublished

data) relating SOC flux to (GI):

DSOCt~{4,869|GI3z6,038|GI2{1,748|GI ð14Þ

where DSOC is in units of Mg C km22 y21 and GI equals the

proportion of aboveground net primary production (NPPt, grasses

only) consumed by grazers (CONSt). To estimate GI we first had to

estimate NPPt and CONSt on the basis of rainfall and the size of

the wildebeest population. We used an empirically derived

equation relating NPPt to annual rainfall (Rann) to estimate annual

production [25] in Mg km22 y21:

NPPt~(0:69|Rann{102)|0:6 ð15Þ

The correction factor of 0.6 adjusts the production estimate to

account for bare ground, topography, rivers, etc. [21,38]. To

estimate CONSt (in MG DM km22 y21) on a unit area basis

(assuming a total area of 25,000 km2) we used the following

equation:

CONSt~1:79|W=(25,000|0:54) ð16Þ

where 1.79 (in Mg DM) is our estimate of annual consumption for

an average wildebeest based on empirically derived functions

relating daily voluntary intake to body mass [69]. In our analysis

we only model wildebeest, but numerous other grazing species

(such as buffalo) have covaried numerically with wildebeest as a

result of rinderpest eradication and poaching pressure [15,36]. On

the basis of census data, we estimate that wildebeest represent 54%

of the biomass of Serengeti grazers on a metabolic basis (which

maps to consumption), and use this value in Equation 16 to

generate a realistic estimate of historic consumption patterns for all

Trophic Cascades and Carbon Dynamics
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grazers. We used Equations 15 and 16 to estimate GI = CONSt/

NPPt on an annual basis, and applied this estimate to Equation 14

to estimate DSOCt. Our mean simulated estimate of GI for the

period 1974–1977 (0.55) compared favorably with a mean field-

based estimate of 0.52 obtained for this period [25].

To estimate DSOCt as a function of fire, we first used a published

model of Serengeti soil organic matter (SOM) dynamics [18] to

estimate mean annual SOM changes in the top 10 cm of soil (the

layer most susceptible to fire-induced SOM losses [70]) as a

function of fire frequency. We estimated maximum annual SOM

(and SOC) losses of 0.8% y21 with an annual fire regime (Ft = 1).

These estimates are consistent with long-term values measured

elsewhere [71]. We used a linear interpolation (with DSOCt = 0

with no fire) to estimate DSOCt as a function of area burned (Ft), as

follows:

DSOCt~{34:6|Ft ð17Þ

based on mean values of SOM of 7.8% [19] and a mean bulk

density of 1.21 [25].

To estimate changes in total ecosystem C, we modified our best-

fit state-space model (model 3 in Table 1) to simulate D tree

Ct+DSOCt over the period 1960 to 2003 based on inferred values

of Wt, Ft, and Tt and Equations 14–17. We adjusted D tree Ct in

our calculations of total ecosystem C change by a factor of 2/3 to

account for the fact that one third of the ecosystem consists of

edaphic, tree-less grasslands. To smooth out the high degree of

inter-annual variation in D tree Ct+DSOCt, we present our results

as mean annual changes calculated over decadal intervals.
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