
Bi/Ge105: Evolution

Homework 4

Due Date: Wednesday, February 7, 2024

“We may regard the present state of the universe as the effect of its past and
the cause of its future. An intellect which at a certain moment would know
all forces that set nature in motion, and all positions of all items of which
nature is composed, if this intellect were also vast enough to submit these
data to analysis, it would embrace in a single formula the movements of the
greatest bodies of the universe and those of the tiniest atom; for such an
intellect nothing would be uncertain and the future just like the past would
be present before its eyes.”

–Pierre Simon Laplace, A Philosophical Essay on Probabilities

1. Population Genetics for Haploid Organisms

In this problem, we build on what was done in class, but now focusing on
the case of haploid organisms rather than diploid organisms. Once again, we
think about the one-locus, two-allele (A1 and A2) abstraction that we have
already been using in class.

(A) In the presence of selection, with fitnesses w1 and w2 for our two geno-
types, write down the expressions for the new values of p and q after a
generation of selection. If you think of the urn idea we considered in class,
then the number of A1 alleles is N1 and the number of A2 alleles is N2, and
there are a total of N = N1 + N2 alleles in our urn. This means that we
assign p = N1/N and q = N2/N to the probability of drawing an A1 and an
A2, respectively. What we want is p′ and q′ which is the frequencies after a
single generation of selection. Make sure you explain your notation and that
you give an appropriate definition of the mean fitness in the context of this
simplified haploid example.

(B) Now, consider the case in which the relative fitnesses are w1 = 1 and
w2 = 1 − s, where s is the so-called selection coefficient. Work out an ex-
pression for ∆p as a function of p, q and s. Now, assuming that the initial
frequency of p = 0.01 and that s = 0.1, make a plot of ∆p as a function of
the generation number. Explain in what sense the system is evolving.
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(C) Now imitate the concept we did in class in order to work out the
mutation-selection balance. Just as we did in class for the diploid case,
work out an expression for p′′ (i.e. after both selection and mutation in a
single generation) in terms of p, q, s and µ (the rate of mutation from A1 to
A2). Remember that in thinking about this mutation-selection balance, we
are imagining that the mutation from A2 to A1 is exceedingly rare compared
with the rate from A1 to A2 (i.e. it is easier to destroy than to build!) Now,
by insisting that the allele frequencies no longer change (i.e. you find the
steady state), find the value of p∗ and q∗ in the steady-state limit. Make sure
you give an intuitive explanation of the result and their dependence on the
parameters such as s and µ.

2. Population Genetics for Diploid Organisms

In class we talked about the expression for ∆p in the case of selection. In
this problem we are going to revisit those ideas and elaborate on them further.

(A) Rederive the expression we worked out for ∆p, namely,

∆p =
p

w̄
[p(w11 − w̄) + q(w12 − w̄)]. (1)

By using the definition of w̄, demonstrate that this can also be written as

∆p =
pq

w̄
[p(w11 − w12) + q(w12 − w22)]. (2)

Make a plot of ∆p vs p for the case of overdominance in which w12 > w11 >
w22. Make sure you explain what this graph demonstrates. Essentially, this
is a phase portrait that shows how the allele frequency changes from one
generation to the next.

(B) In class we claimed that in the case of overdominance, there is a fixed
point p∗. Using the expression

∆p =
pq

w̄
[p(w11 − w12) + q(w12 − w22)], (3)

find p∗ by solving for the case in which ∆p = 0. Your expression for p∗ will
be a simple function of w11, w12 and w22.
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(C) Now repurpose your calculations to the case of the case of heterozygous
advantage and choose our fitnesses symmetrically as w11 = w22 = 0.1 and
w12 = 1.0. Once again, make a plot of ∆p vs p and explain what the resulting
graph shows us.

3. Loss of Heterozygosity

Our discussion of genetic drift argued that one of the ways that people
examine the extent of drift is by monitoring the heterozygosity. Recall that
we looked at several examples including the classic experiment of Buri on
eye color in flies, the lava lizards of the Galapagos where we saw that the
heterozygosity was smaller on smaller islands and the case of the snapper fish
in New Zealand where the hypothesis of overfishing has been advanced. To
explore the idea of loss of heterozygosity in more detail, we are going to work
with our usual one-locus, two-allele model and the Wright-Fisher model. The
goal will be to compute the loss of heterozgosity on a per generation basis.

(A) Given that the initial frequency of allele 1 is p0, work out an expression
for the initial heterozygosity (H(0) = H0) in terms of p0. Remember that in
the most general case, heterozygosity is given by

H(t) = 1−
∑
i

pi(t)
2, (4)

where t refers to the generation of interest. The idea of this expression is to
subtract off the probability of all of the homozygotes. Your job is to exploit
this definition but in the simpler case where there are only three genotypes,
two of which are homozygotes.

(B) Now let’s find the heterozygosity one generation later. From the previous
result, we need

〈H1〉 = 〈2p1(1− p1)〉 = 2〈p1〉 − 2〈p21〉. (5)

To make sense of this, note that there are a total of N alleles and we want
to find the probability that we have n of allele 1. Write the probability of
getting n A1 alleles, given that you are drawing from an urn with p0N A1

alleles. We need to compute

〈p1〉 = 〈 n
N
〉 (6)

3



and

〈p21〉 = 〈 n
2

N2
〉. (7)

Since N is a constant, all this really means is that you need to figure out 〈n〉
and 〈n2〉. Recall that these are defined as

〈n〉 =
N∑

n=0

np(n,N) (8)

and

〈n2〉 =
N∑

n=0

n2p(n,N), (9)

where p(n,N) is the probability that we pull n copies of A1 out of our urn
given that the probability of getting an A1 is p0. Note that to evaluate these
averages, this is the moment to use the trick that was showed while dis-
cussing the Luria-Delbruck experiment, namely, differentiation with respect
to a parameter. For example, if we have

〈n〉 =
N∑

n=0

n
N !

n!(N − n)!
pnqN−n, (10)

the critical observation is that we can get this as

〈n〉 = p
∂

∂p

N∑
n=0

N !

n!(N − n)!
pnqN−n. (11)

Note that from the binomial theorem,

N∑
n=0

N !

n!(N − n)!
pnqN−n = (p+ q)N . (12)

This trick empowers you to evaluate all of the averages required above.
To be concrete, your goal is to show that

〈H1〉 = 2p0(1− p0)(1−
1

N
) = H0(1−

1

N
). (13)
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Once you have demonstrated this result, it implies in turn that if we run the
same argument over and over again for t generations, we have

〈Ht〉 = H0(1−
1

N
)t ≈ H0e

− t
N . (14)

Fill in the missing steps of that argument. The emergence of the exponential
is based upon the observation that e−x ≈ 1 − x for small x. Make sure you
include all the steps leading to the claims offered above and that you explain
what this final result tells you about the relationship between the time to
fixation of alleles and the effective population size.
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