
Bi/Ge 105: Evolution
Homework 3

Due Date: Wednesday, January 31, 2024

“I only went out for a walk and
finally concluded to stay out till
sundown, for going out, I found, was
really going in,”

John Muir

1. Genetic drift as a force of evolution

Simulating the processes of evolution

In class this week we learned about the mathematical formalism behind pop-
ulation genetics, one of the centerpieces of evolutionary theory. The ideas
described in class will provide a quantitative backdrop for understanding the
different evolutionary forces that shape life on our planet. It is both profound
and amusing how much we can learn about evolution by thinking about coin
flips and similar games of chance. Indeed, the broad reach of the mathematics
of coin flips is an example of what former Caltech undergrad and now Harvard
professor Joe Blitzstein likes to say: “The nouns change, but the verbs remain
the same.”

In this problem we want you to explore different evolutionary forces by
means of simulations. You will use what you learned in the stochastic simu-
lation tutorial to explore the interplay of different evolutionary forces such as
genetic drift and mutation. By using simulations we will sidestep more ad-
vanced mathematics of stochastic differential equations needed to study these
concepts analytically while still getting clear insights into how these forces
may affect the course of evolution.

The Buri genetic drift experiment

In 1956 Peter Buri, a student of Sewall Wright published the now classic
paper “Gene Frequency in Small Populations of Mutant Drosophila” in which
he experimentally demonstrated the concept of genetic drift. The idea for this
beautiful experiment is depicted in Figure 1. Briefly, Buri began with eight
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female and eight male flies, all heterozygotes of the bw locus. This means that
all of the flies had 1 copy of the gene associated with white eyes, and one copy
of the gene associated with red eyes. The phenotype that this combination of
alleles gives is flies with orange eyes. He then allowed the flies to reproduce,
and after removing the adults, he randomly chose 8 males and females from
the next generation of offspring without looking at the eye color. These new
8 males and 8 females were transferred to a new flask and the procedure was
repeated for 19 generations.

Question 1a

Work out the expected genotype frequency of red-eyed flies, white-
eyed flies and orange-eyed flies after the first generation. (Hint: Re-
call that each allele is drawn from the parent’s pool at random
with replacement. This means that to compute the frequency
of red-eyed flies you should calculate frr = P (red allele first draw) ·
P (red allele second draw).

Since the offspring that made it to the next generation were chosen at
random, Buri knew that the outcome would be different if he repeated an
identical experiment in different vials. As a result, for statistical power he
simultaneously tracked 107 flasks as shown in Figure 2. Each generation,
he counted the number of red-eyed, white-eyed and orange-eyed flies he had
randomly chosen. Figure 2 shows the outcomes for these different vials after
19 generations. Because the flies are allegedly mating at random, with each
generation there is an accumulation of fluctuations. As a result, after 19
generations, many vials contained only white-eyed or red-eyed flies, though
some vials still contained a mixture of eye colors.

Having quantified the number of red-eyed, white-eyed and orange-eyed
flies Buri was able to quantify the frequency of alleles in the population. Since
none of the alleles were dominant, he could infer the genotype by looking at
the phenotype of the flies.
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Figure 1: Buri’s experimental setup. At time t = 0 eight heterozygote
females and eight heterozygote males were allowed to reproduce. From their
offspring, eight males and eight females were chosen at random and transferred
into a new flask.
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Figure 2: Multiple replicates of the Buri experiment. Buri repeated
his experiment in 107 separate vials, with the evolutionary trajectory different
each time as a result of genetic drift. Note that in the long time limit, many
of the vials have gone to fixation with all flies having either white or red eyes.
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Figure 3: Results of the Buri experiment. By tracking the phenotypes of
the flies, Buri was able to infer the allele frequencies for each population. The
allele frequencies change as a result of genetic drift and after 19 generations,
many of the vials contain flies all with the same eye color, implying fixation
of alleles and evolution due to genetic drift.

Question 1b

Write down the formula for the genotype frequencies in terms of the
eye color count. Use the notation Nred for the number of red-eyed flies
in a given vial, Nwhite for the number of white-eyed flies in that same
vial and finally, Norange for the number of orange-eyed flies in that same
vial. Your task is to figure out the frequency of red (fr) and white (fw)
alleles in a given vial given the counts of the number of red-, white- and
orange-eyed flies.

Figure 3 summarizes the results of the experiment. By tracking alleles over
time with these 107 populations exposed to the same conditions, Buri was able
to observe evolution driven entirely by genetic drift! He saw how in some of
the populations one of the alleles went extinct, arising from nothing more than
the fluctuations inherent in small populations.

It is now time for us to use our computational prowess to simulate and
explore the Buri experiment. Your first task will be to reproduce Figure 3 by
means of stochastic simulations. The key elements of the code you need to do
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this analysis you already worked out in the stochastic simulation tutorial.

Question 1c

Perform stochastic simulations of genetic drift for 107 populations over
19 generations using the same population size as Buri, i.e. 16 flies to-
tal (32 alleles). Plot histograms of the allele frequency for generation
numbers 0, 1, 10, and 19.

Using these exact same tools, we will now explore the effect of the popula-
tion size.

Question 1d

Repeat the stochastic simulations for 107 populations during 1000 gen-
erations using the same population size as Buri. Quantify the time it
takes for each of these populations to have one of the alleles fixed, i.e.
find the time point for each population at which the allele frequency
becomes either zero or one, and save the generation number at which
this happened. Now repeat the simulation for varying population size
(N = 4, 8, 16, 32, and 64). Plot the mean time to fixation as a function
of the population size and comment on how this average time to fixation
scales as the population size changes. What do these results mean for
the role genetic drift plays in different populations? (Hint: to find which
generation one of the alleles was fixed in the population, the function
numpy.where might become handy. Basically you just need to find a way
for Python to tell you at which entry of the array the frequency became f
== 1 or f == 0. You might also want to check the numpy.logical_or
function that allows you to perform boolean or operations over numpy
arrays.)

The effect of mutations

Let’s now explore the effect of another evolutionary force – mutation. In our
toy model, rather than thinking about tracking the complexity of single base
pair mutations, we will think of a “reaction” of the following form

A
µ1−⇀↽−
µ2

a (1)
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where A and a are the two versions of the allele (for example red and white),
and µ1 and µ2 are the mutation rates that take you from one allele to the
other. To simplify things even further we will assume µ1 = µ2 ≡ µ.

Question 1e

Implement a stochastic simulation to include the effect of mutation for a
single population and plot the allele frequency over time. Comment on
the differences with respect to the case without mutation. (Hint: The
mating still happens at random in this scenario, but now each allele after
being selected for the next generation must flip a second coin to decide
if it remains as the same allele, or it mutates into the other allele). Use
the value µ ≈ 0.001 for your simulations.

Question 1f

Extend the algorithm you just wrote and simulate 100 populations. Plot
10 of these trajectories, as well as histograms of allele frequency at repre-
sentative time points such as t = 0, 5, 10, 50, 100, 500 generations. Com-
pare this to the null model where the mutation rate is equal to zero and
comment on the differences if any between the distributions over time.

Question 1g

You will now explore the effect of the magnitude of the mutation rate.
Run the simulation for 100 generations for µ =0, 0.001, 0.01, 0.1 and
plot the histogram of allele frequencies of the final time point for each
of these mutation rates. Comment on how the distribution changes as
the mutation rate increases.

2. The Wright-Fisher model and genetic drift

In the previous part of the homework, you had a chance to explore genetic drift
by direct numerical simulation of the effects of finite population sizes. What
we found was that because of the simple properties of binomial partitioning,
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there are fluctuations of allele frequencies that over long times can result in the
fixation of some alleles over others in a population, thus resulting in neutral
evolution (as opposed to selection). In this problem we are going to flesh out
the approach described in class using the transition matrix T in conjunction
with the evolution law Xn = TXn−1. Like in class, here we use the notation
Xn to refer to the vector that carries the probabilities of all the different
possible allele counts that could exist in the population at generation n. For
example, in Buri’s experiment on fly eye color, this is a 33-dimensional vector
since there are 16 flies and hence 32 total alleles and the number of red alleles
in a given vial can be 0, 1, 2, ..., 32, giving 33 entries in our vector. Your job
is to use the transition matrix

Ti→j = (2N)!
j!(2N − j)!

(
i

2N

)j (
1 − i

2N

)2N−j

(2)

to generate and plot the time series of X from one generation to the next.

Question 2

First, justify and explain why this transition matrix is the right way to
represent the evolutionary dynamics from one generation to the next.
Then, make three plots, one with N = 16 as in the Buri case, one with N
= 10 (5 male, 5 female) and one with N = 30 (15 male, 15 female) and
use your graphs to comment on the time to fixation. Also, compare and
contrast the result of this “deterministic” treatment of the evolution of
eye color to the simulation you did in the previous problem.

3. Experimental evolution in the era of genome sequenc-
ing

Within the past two decades, sequencing an organism’s entire genome has
become a nearly trivial procedure. This affords us the ability to observe evo-
lution at the genetic level in real time. This has opened up an exciting new
field in which the technology of next-generation sequencing is combined with
the experimental advantage of microbial systems making it possible to test
quantitative evolutionary theories.

A particularly interesting long-term experiment involves Professor Richard
Lenski at Michigan State University. On February 24, 1988, Lenski began
growing twelve E. coli cultures in parallel, similar to Buri’s experiment from

8

http://myxo.css.msu.edu/index.html


problem 1 but in a haploid world with organisms with generation times of
around one hour. Three decades later and ≈ 70,000 generations in this exper-
iment has watched more generations of evolution than any other experiment
ever done.

These bacterial cultures have been adapting to a very simple environment
with a fixed media composition. The advantage of working with these microbes
is that every certain number of generations a sample can be frozen and brought
back to life at will. In this sense, Lenski’s −80◦C freezers act as an evolutionary
time-machine, allowing him to recover organisms from the “fossil record”!

One surprising outcome of this experiment is the appearance of a bacterial
strain capable of metabolizing a new carbon source. For historical reasons
(most likely to avoid phage infection) the cultures have always been grown
in the presence of citrate. Back in the day, before the sequencing revolution,
one of the ways to identify bacterial species was by their metabolic repertoire.
Scientists would classify a bacterium as E. coli for example based on its ability
to ferment arabinose, lactose, mannitol, and the lack of ability to ferment
citrate, among other things (look at this site for a complete list of the features).
So in principle if you were to collect a sample from the soil that was able to
ferment citrate you would immediately conclude it was not a wild-type E. coli
strain.

In fact, E. coli does contain the machinery to ferment citrate encoded in
its genome, but this set of genes is only expressed under anaerobic conditions.
Lenski found that in one of his 12 replicate populations bacteria were able to
metabolize citrate under aerobic conditions. This means that once the glucose
that is found initially in the media runs out, this mutant strain can still grow
further before the culture is diluted the next morning, giving it a clear fitness
advantage over its competitors!

In this problem we will work out a very simple equation to analyze how
long it would take for this mutant to overtake the culture. Consider the case
in which two alleles, A1 and A2, are present in a population with initial fre-
quency p and q = 1−p, respectively. For example, these alleles could be those
associated with the ability to metabolize citrate or not. Let us assume that
cells harboring allele A1 have a growth rate m1 and those harboring A2 have
a growth rate m2. When thinking about microbial organisms the growth rate
is often taken as a metric for fitness and it’s given the name of the Malthusian
parameter. For natural selection to act on organisms there must be a differ-
ence in fitness, otherwise if all organisms had the same fitness, no Darwinian
evolution would occur.

Let us further assume that A1 represents the allele that allows bacteria to
metabolize citrate, and as a consequence m1 > m2. In particular we will say
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that m2 = m1(1 − s), where s is a small parameter s ≪ 1 that we can think of
as the “selection coefficient.” If N1 represents the number of cells with allele
A1, and N2 the number of cells with allele A2, the equation that describes the
growth curve is given by

dNi

dt
= miNi, (3)

for i ∈ {1, 2}. The solution to this differential equation results in an exponen-
tial growth profile, namely,

Ni(t) = Ni(0)emit, (4)

where Ni(0) is the initial number of cells with allele Ai.

Question 3a

Write an expression for Ntot(t) the total number of cells as a function of
time. (Hint: Remember we have two competing cell types and we are
assuming they don’t interfere with each other).

Having this expression for Ntot(t) is interesting. But what we really care
about is the frequency of alleles in the population given that one of the alleles
has a fitness advantage over the other. This means that the quantity we care
about is the normalized frequency p(t).

Question 3b

Write an expression for p(t), the frequency of the mutant allele A1 and
another expression for q(t), the frequency of the wild-type allele A2 as a
function of time. This should be a function of the initial cell count N1(0)
and N2(0), as well as the selection coefficient s. Simplify this result to
an expression of the form

p(t) = 1
1 + f(t) . (5)

Hopefully you ended up with a nice, compact expression that looks like a
logistic function. Let’s now explore the consequences of this expression.
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Question 3c

Let p(0), the initial frequency of A1, be 10−9. Assume the doubling time
of the mutant is 1 hour, then plot p(t) and q(t) for different selection
coefficients, s = 10−4, 10−3, 10−2. Label the x axis as years rather than
hours to have a better sense of how long it would take for the mutants
to overtake the population. (Hint: It might be useful to plot this both
on a linear scale and on a log scale for the x axis.)

In one of Lenski’s experiments, since his fridges contain samples at many
time points of this long-term experiment, he was able to go back in time
and measure the relative fitness of strains compared to the parental strain.
Figure 4 shows some of his results. The blue curve shows how for the first
20,000 generations the rate of mutation accumulation remains pretty constant
over time. The green curve shows the relative fitness of further time points
compared to the parental strain at the beginning of the experiment. There
we can see that at the beginning there was a sharp increment in the relative
fitness, to then transition to a less steep rate of fitness increment.

Question 3d

Provide a qualitative explanation for why these two phases of fitness
increment might exist. (Hint: Think of the number of sites in a genome
where a mutation might be beneficial as finite.)

Question 3e

Typically, an allele with a frequency within a population as low as 0.01
would not be detectable with sequencing. However, the increasing ease of
sequencing entire genomes has made the technique of “deep sequencing”
possible, in which a population is sequenced many (possibly hundreds)
of times over so that even rare alleles have a high probability of being
detected. In the sequencing techniques used by Lenski, the genome
received 50× coverage, meaning that each nucleotide was read at least
fifty times. What is a reasonable lower bound of allele frequency that
you would expect to be able to detect? Remember that sequencing
techniques are not perfect, with possible error rates around 1%.
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Figure 4: Rates of genomic evolution and fitness improvement. Blue
circles show the total number of genomic changes relative to the ancestor in
each sampled clone. The blue line represents a model where mutations accu-
mulate uniformly over time. The light blue curves define the 95% confidence
interval for this linear model. Green squares show the improvement of this
population’s mean fitness relative to the ancestor over time, and the green
curve is a hyperbolic plus linear fit of this trajectory. Each fitness estimate is
the mean of three assays; most of the spread of points around the fitness tra-
jectory reflects statistical uncertainty inherent to the assays. The inset shows
the number of mutations in the 40,000-generation clone. Reproduced from [1].
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4. Humans as the world’s greatest evolutionary force

In a provocative article, Stephen Palumbi referred to humans as the world’s
greatest evolutionary force. In various problems we will nibble away at this
question to see to what extent we think he is correct or if he is guilty of
hyperbole. One of our favorite case studies in evolution is the whale. As we
will discuss more in coming weeks, whales emerged in the world’s oceans on
the ten million year time scale after the great extinction event that ended the
reign of the dinosaurs.

Question 4a

Whaling removed roughly 3 million whales from the world’s oceans in
the mid twentieth century. How much biomass does that represent and
how does that compare to the biomass of the entirety of humanity?

Question 4b

How much extra whale poop would be deposited in the world’s oceans
each year if those whales had not been removed?

Question 4c

Using your estimate from the last homework for the total mass of fertil-
izer used by the world’s farms, compare that to the mass of whale poop
that has been lost due to whaling. The reason this estimate is so inter-
esting to think about is that it has been hypothesized that this whale
poop is a fertilizer that helped maintain an enormous krill population.
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