Bi/Ge 105: Evolution
Homework 3
Due Date: Wednesday, February 4th, 2026

“An ounce of algebra is worth a ton
of verbal argument.”

JBS Haldane

1. Simulating genetic drift with coin flips

In class we learned about the mathematical formalism behind population ge-
netics, one of the centerpieces of evolutionary theory. Those ideas will provide
a quantitative foundation for understanding the different evolutionary forces
that shape life on our planet. It is both profound and amusing how much we
can learn about evolution by thinking about coin flips and similar games of
chance. The broad reach of the mathematics of coin flips calls to mind what
Harvard professor (and former Caltech undergrad!) Joe Blitzstein likes to say:
“The nouns change, but the verbs remain the same.”

In this problem, we’ll explore evolutionary forces using stochastic simula-
tions. This approach will lead us to insights about the interplay between ge-
netic drift and mutation rates, while sidestepping the more advanced stochastic
differential equations needed to model these processes analytically.

The Buri genetic drift experiment

In 1956, Peter Buri published a classic paper in which he experimentally
demonstrated the concept of genetic drift in fruit flies[] An overview of his
approach is depicted in Figure [l Briefly, Buri began with eight male and
eight female flies, all of which were heterozygoud? at the bw locus. There are
two possible alleles of bw: one associated with white eyes, and one associated
with red eyes. A fly homozygous for the white allele will have white eyes; a fly
homozygous for the red allele will have red eyes. But being bw heterozygotes,

' Buri [1956.

2Like humans, fruit flies are diploid: they have one maternal and one paternal allele of
each gene. Where both alleles are the same, that individual is a homozygote; where they
differ, a heterozygote.



each of Buri’s flies had one copy of the white allele and one copy of the red
allele. This combination leads to a third possible phenotype: that of orange
eyes.

Thus starting with his eight male and eight female flies, all of which had
orange eyes, Buri let them reproduce. This yielded many larvae. From these
offspring, he randomly chose eight new males and females without attention
to their eye color. These sixteen flies were transferred to a new flask, and the
procedure was repeated for nineteen successive generations.
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Figure 1: Buri’s experimental setup. Each generation, eight heterozygous
females and eight heterozygous males were allowed to reproduce. From their
offspring, eight new males and eight new females were chosen at random and
transferred into a new flask.



Question la. Work out the expected genotype frequency of red-eyed flies ( f,..),
white-eyed flies (fuw), and orange-eyed flies (f., and f,,.) after the first gener-
ation. Recall that each allele is drawn from the parent’s pool at random with
replacement.

Since both the mating process and the selection of offspring were random,
Buri knew that the outcome would be different if he repeated an identical
experiment in different vials. As a result, and for statistical power, he si-
multaneously tracked 107 flasks as shown in Figure At each generation,
he recorded the number of red-eyed, white-eyed and orange-eyed flies he had
randomly chosen. After 19 generations, many vials contained only white-eyed
or red-eyed flies, though some vials still contained a mixture of eye colors.
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Figure 2: Multiple replicates of the Buri experiment. Buri repeated
his experiment in 107 separate vials, with the evolutionary trajectory different
each time as a result of genetic drift. In the long time limit, many of the vials
became fixed: all flies had either white or red eyes, meaning that the opposite
allele had been completely eradicated from the population.

Question 1b. Write down a formula for fly genotype frequencies in terms of
eye color count. That is, given the counts of the number of red-, white-, and



orange-eyed flies in a single vial, what is the frequency of red alleles (f,) and
white alleles (fy,)? Use Nyed, Nunite, and Nopange to denote the number of red-,
white-, and orange-eyed flies in a vial.

Figure [3] summarizes the results of the experiment. Buri witnessed evolu-
tion in real time driven entirely by genetic drift! He saw that in some popu-
lations, an allele could go extinct, all due to nothing more than the random
fluctuations inherent in small breeding populations. To see this for ourselves,
we’ll now develop a computational simulation of his experiment.
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Figure 3: Results of the Buri experiment. By tracking the eye color of
flies, Buri was able to infer allele frequencies for many populations. Changes
in these frequencies arose due to genetic drift. After 19 generations, many of
the vials resulted in the fixation of alleles: a tangible evolutionary milestone.

Question lc. Perform stochastic simulations of genetic drift using the same
parameters as Buri: 107 populations over 19 generations, where each popu-
lation consists of 16 flies (hence 32 bw alleles). Plot histograms of the allele
frequency for generations 0, 1, 10, and 19.

Question 1d. Repeat the simulations from the previous problem, this time
continuing for 10® generations. Quantify how long it takes for each population
to become fixed. In other words, record how many generations it takes for each
population to reach an allele frequency of zero or one. Do this for populations
of size N = 4, 8, 16, 32, and 64. Plot the mean time to fixation as a function



of population size. Hence, discuss the effect of population size on genetic drift.

Let’s now explore the effect of another evolutionary force — mutation. In
our toy model, rather than thinking about tracking the complexity of single
base pair mutations, we will think of a “reaction” of the form

At g (1)
2
where A and a are the two versions of the allele (e.g. red and white), and j4
and po are the mutation rates that take you from one allele to the other. To
simplify things even further, assume that g = o = p.

Question le. Implement mutations into your simulation, at a rate of u = 0.001.
Plot the allele frequency for a single population of 16 flies over 109 generations.
What do you see? (Hint: one way to think of this is that mating still happens
at random, but now before being selected for the next generation, each allele
must flip a second, very biased coin to decide if it will mutate or not.)

Question 1f. Simulate 100 populations with the same mutation rate as before.
Plot 10 of these trajectories. Also plot histograms of allele frequencies at t =
0, 5, 10, 50, 100, and 500 generations. Compare these histograms to the cases
in which ¢ = 0. What do you notice?

Question 1g. Simulate a single population of 16 flies over 109 generations for
1 =0,0.001,0.01, and 0.1. In each case, plot the histogram of allele frequencies
from the final time point. How does p affect evolution and drift in this case?



2. Experimental evolution in the era of DN A sequencing

Over the course of your lifetime, sequencing an organism’s entire genome has
gone from a pipe dream to a routine procedure. This has opened up an excit-
ing new field, where the technology of next-generation sequencing meets the
experimental benefits of studying microbial populations, making it possible to
quantitatively test evolutionary theories.

One particularly interesting long-term experiment in this space comes from
the lab of Richard Lenski at Michigan State University. On February 24, 1988,
he began growing twelve E. coli cultures in parallel, passaging their offspring
much like Buri did. But unlike Buri’s flies, these bacteria are haploid, asexual,
and divide extremely quickly, with generation times on the order of an hour.
Three decades and nearly 100,000 generations later, it’s the longest-running
continuous evolution experiment in the world.

These bacterial cultures have been adapting to a very simple environment
with a fixed media (liquid food source) composition. The advantage of working
with these microbes is that every few generations, a sample can be frozen
indefinitely and brought back to life at will. In this sense, Lenski’s —80°C
freezers act as an evolutionary time machine, allowing him to recover organisms
from a “fossil record”!

One surprising outcome of this experiment has been the appearance of
a bacterial strain capable of metabolizing a new carbon source: citric acid,
or citrate. For historical reasons (most likely to avoid phage infection), the
cultures have always been grown in the presence of citrate. But even though
citrate contains carbon, typical E. coli cells cannot eat this moleculef’

In fact, things get weirder: although E. coli has the machinery to ferment
citrate encoded in its genome, those genes are only expressed under anaerobic
conditions. Lenski discovered that the bacteria in one of his replicates had
evolved to metabolize citrate even under aerobic conditions. In practice, this
meant that once the glucose in their media ran out, these cells could continue
growing off of citrate until they received fresh media in the morning — resulting
in a clear fitness advantage over their competitors!

With this story in mind, we’ll work out a very simple model to analyze
how long it might take for such a mutant to overtake a culture.

3In fact, before the advent of DNA sequencing, a common way microbiologists differen-
tiated bacterial species was by what they could and couldn’t eat. Among other things, E.
coli was known for its ability to ferment arabinose, lactose, and mannitol, and inability to
ferment citrate.


http://myxo.css.msu.edu/index.html
http://www.microbiologyinfo.com/biochemical-test-and-identification-of-e-coli/

A toy model for two competing bacteria strains

Consider the case in which two alleles, A; and A,, are present in a population
with initial frequency p and ¢ = 1—p, respectively. Assume that cells harboring
allele A; have a growth rate my, while those harboring A; have a growth rate
msy. Let us further assume that A; represents the allele that allows bacteria
to metabolize citrate, and as a consequence m; > ms. In particular, we will
say that my = m;(1 —s), where s is a small parameter s « 1. If N represents
the number of cells with allele A;, and Ny the number of cells with allele A,,
the equation that describes the growth curve is given by

dN;
dt

for 7 € {1,2}. The solution to this differential equation results in an exponential
growth profile, namely

= m; N, (2)

Ni(t) = Ni(0)e™, (3)
where N;(0) is the initial number of cells with allele A;.

Question 2a. Write an expression for the total number of cells Ny, (t) as a
function of time. Remember we have two competing cell types and we are
assuming they don’t interfere with each other.

Having this expression for Ny, (t) is interesting, but what we really care
about is the frequency of alleles in the population given that one of the alleles
has a fitness advantage over the other.

Question 2b. Write an expression for p(t), the frequency of the mutant allele
Ay over time. Similarly, find ¢(¢), the frequency of the wild-type allele A,.
These should be a function of the initial cell counts Ny(0) and Ny(0), as well
as the selection coefficient s.

Hopefully you ended up with a nice, compact expression that looks like a
logistic function. Let’s now explore the consequences of this expression.

Question 2c. Let p(0) = 1072 denote the initial frequency of A;. Plot p(t)
and ¢(t) for the cases where s = 107*, 1073, and 1072, Assume the doubling
time of the mutant is 1 hour. Comment precisely: how does the time that
it takes for the higher-fitness allele to overtake the population vary with the
selection parameter s? When plotting, use x-axis units of years (rather than



hours) to give a better sense of the timescales needed for mutants to overtake
the population.
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